Pendeteksian Pelanggaran Pada Penyebrangan Jalan Menggunakan Single-Shot Detector Pada ESP32
Abstract
Tingginya jumlah kendaraan bermotor dan pertumbuhannya di kota-kota besar, serta tingginya angka pelanggaran membuat identifikasi pelanggaran terhadap pengendara kendaraan bermotor menjadi sulit, terutama dalam hal pengendara yang berhenti di marka persimpangan jalan (zebra cross). Pemanfaatan teknologi computer vision diharapkan dapat membantu mengidentifikasi pelanggaran dengan mengenali objek berupa kendaraan bermotor yang terdapat pada area visual yang tertangkap kamera. Sistem menggunakan metode pendeteksi single-shot detector dari model yang dilatih dan diimplementasikan pada perangkat keras ESP32. Sistem yang dikembangkan tidak hanya berupa perangkat keras tetapi juga perangkat lunak antarmuka yang dapat digunakan untuk mengkonfigurasi dan menentukan region yang diinginkan. Dua macam pengujian dilakukan, empat pengujian dalam skenario real time dan 20 pengujian secara offline menggunakan dataset Pedestrian Traffic Light. Seluruh keadaan pada skenario real-time dapat dideteksi dengan tepat. Sementara itu, eksperimen offline menggunakan dataset dari Dataset Pedestrian Traffic Light menghasilkan akurasi 96,78%.
Downloads
References
N. K. Jain, R. K. Saini, and P. Mittal, “A Review on Traffic Monitoring System Techniques,” in Soft Computing: Theories and Applications, 2019, pp. 569–577, doi: 10.1007/978-981-13-0589-4_53 [Online]. Available: http://dx.doi.org/10.1007/978-981-13-0589-4_53
World Health Organization, “Road traffic injuries.” [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries. [Accessed: Feb. 20, 2022]
A. Mhalla, T. Chateau, S. Gazzah, and N. E. B. Amara, “An Embedded Computer-Vision System for Multi-Object Detection in Traffic Surveillance,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 11, pp. 4006–4018, Nov. 2019, doi: 10.1109/TITS.2018.2876614. [Online]. Available: http://dx.doi.org/10.1109/TITS.2018.2876614
G. T. S. Ho, Y. P. Tsang, C. H. Wu, W. H. Wong, and K. L. Choy, “A Computer Vision-Based Roadside Occupation Surveillance System for Intelligent Transport in Smart Cities,” Sensors , vol. 19, no. 8, Apr. 2019, doi: 10.3390/s19081796. [Online]. Available: http://dx.doi.org/10.3390/s19081796
N. A. Khan, N. Z. Jhanjhi, S. N. Brohi, R. S. A. Usmani, and A. Nayyar, “Smart traffic monitoring system using Unmanned Aerial Vehicles (UAVs),” Comput. Commun., vol. 157, pp. 434–443, May 2020, doi: 10.1016/j.comcom.2020.04.049. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0140366420300189
G. Liu et al., “Smart Traffic Monitoring System Using Computer Vision and Edge Computing,” IEEE Trans. Intell. Transp. Syst., pp. 1–12, undefined 2021, doi: 10.1109/TITS.2021.3109481. [Online]. Available: http://dx.doi.org/10.1109/TITS.2021.3109481
M. Arshad and P. Kumar, “Detection of Two-Wheeler Traffic Rule Violation Using Deep Learning,” in 2022 IEEE World Conference on Applied Intelligence and Computing (AIC), Jun. 2022, pp. 109–114, doi: 10.1109/AIC55036.2022.9848979 [Online]. Available: http://dx.doi.org/10.1109/AIC55036.2022.9848979
Ren, He, Girshick, and Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” Adv. Neural Inf. Process. Syst., 2015 [Online]. Available: https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
H. Zhang, H. Chang, B. Ma, S. Shan, and X. Chen, “Cascade RetinaNet: Maintaining Consistency for Single-Stage Object Detection,” arXiv [cs.CV], Jul. 16, 2019 [Online]. Available: http://arxiv.org/abs/1907.06881
W. Liu et al., “SSD: Single Shot MultiBox Detector,” in Computer Vision – ECCV 2016, 2016, pp. 21–37, doi: 10.1007/978-3-319-46448-0_2 [Online]. Available: http://dx.doi.org/10.1007/978-3-319-46448-0_2
A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” arXiv [cs.CV], Apr. 23, 2020 [Online]. Available: http://arxiv.org/abs/2004.10934
H. Gupta and O. P. Verma, “Monitoring and surveillance of urban road traffic using low altitude drone images: a deep learning approach,” Multimed. Tools Appl., vol. 81, no. 14, pp. 19683–19703, Jun. 2022, doi: 10.1007/s11042-021-11146-x. [Online]. Available: https://doi.org/10.1007/s11042-021-11146-x
R. David et al., “TensorFlow lite micro: Embedded machine learning for TinyML systems,” Proceedings of Machine Learning and Systems, vol. 3, pp. 800–811, Mar. 2021 [Online]. Available: https://proceedings.mlsys.org/papers/2021/73. [Accessed: Feb. 20, 2022]
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” arXiv [cs.CV], Jan. 13, 2018 [Online]. Available: http://arxiv.org/abs/1801.04381
T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,” arXiv [cs.CV], May 01, 2014 [Online]. Available: http://arxiv.org/abs/1405.0312
H. Qassim, A. Verma, and D. Feinzimer, “Compressed residual-VGG16 CNN model for big data places image recognition,” in 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Jan. 2018, pp. 169–175, doi: 10.1109/CCWC.2018.8301729 [Online]. Available: http://dx.doi.org/10.1109/CCWC.2018.8301729
J. Hosang, R. Benenson, and B. Schiele, “Learning non-maximum suppression,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4507–4515 [Online]. Available: http://openaccess.thecvf.com/content_cvpr_2017/html/Hosang_Learning_Non-Maximum_Suppression_CVPR_2017_paper.html
M. Shimrat, “Algorithm 112: Position of point relative to polygon,” Commun. ACM, vol. 5, no. 8, p. 434, Aug. 1962, doi: 10.1145/368637.368653. [Online]. Available: https://doi.org/10.1145/368637.368653
S. Yu, H. Lee, and J. Kim, “LYTNet: A Convolutional Neural Network for Real-Time Pedestrian Traffic Lights and Zebra Crossing Recognition for the Visually Impaired,” arXiv [cs.CV], Jul. 23, 2019 [Online]. Available: http://arxiv.org/abs/1907.09706