Penerapan Clustering Terhadap Segmentasi Zonasi Gangguan Layanan Pelanggan Dengan Menggunakan Analisis RFM

  • Nurhadi Universitas Widyatama
  • Yan Puspitarani Universitas Widyatama
Keywords: clustering, data mining, customer segmentation, K-means, RFM

Abstract

The service area and the wide distribution of customers often require quite a long time in terms of handling disturbances, which can reduce the level of customer trust and loyalty to using the network services provided. Customer segmentation by region can help make it easier to analyze disruptions that occur to customer service in customer area zoning so that customer trust and loyalty can be maintained. This research was conducted to understand the characteristics of disturbances that occur in several customer zoning areas. In this study, RFM (Recency, Frequency, Monetary) analysis was performed. Clustering using the K-Means modeling technique, and also performance checking using Cluster Distance Performance to determine the performance of each cluster performed. The results of this study indicate that K-Means Clustering with a value of K=2 is the with the smallest Davies Bouldin value. It means that K=2 has the best performance when compared to other clusters formed.

Downloads

Download data is not yet available.

References

R. W. S. Brahmana, F. A. Mohammed, and K. Chairuang, “Customer Segmentation Based on RFM Model Using K-Means, K-Medoids, and DBSCAN Methods,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 11, no. 1, pp. 32–43, Apr. 2020, doi: 10.24843/LKJITI.2020.V11.I01.P04.

B. E. Adiana, I. Soesanti, and A. E. Permanasari, “Analisis Segmentasi Pelanggan Menggunakan Kombinasi RFM Model Dan Teknik Clustering,” J. Terap. Teknol. Inf., vol. 2, no. 1, pp. 23–32, Apr. 2018, doi: 10.21460/JUTEI.2018.21.76.

M. Fadillah, “Implementasi Clustering Terhadap Segmentasi Pelanggan Dengan Menggunakan Analisis RFM,” 2019, Accessed: Dec. 08, 2021. [Online]. Available: http://repository.widyatama.ac.id/xmlui/handle/123456789/12941.

J. Jamal and D. Yanto, “Analisis RFM dan Algoritma K-Means untuk Clustering Loyalitas Customer,” Energy, vol. 9, no. 1, pp. 1–8, 2019.

A. T. Widiyanto and A. Witanti, “Segmentasi Pelanggan Berdasarkan Analisis RFM Menggunakan Algoritma K-Means Sebagai Dasar Strategi Pemasaran (Studi Kasus PT Coversuper Indonesia Global),” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 1, no. 1, pp. 204–215, Apr. 2021, doi: 10.24002/KONSTELASI.V1I1.4293.

“Data Cleansing: Apa Itu, Manfaat, dan Cara Melakukannya - Glints Blog.” https://glints.com/id/lowongan/data-cleansing-cleaning/#.YbMXGVkxXIU (accessed Dec. 10, 2021).

R. Sistem, “Perbandingan Metode Clustering dalam Pengelompokan Data Puskesmas,” vol. 1, no. 10, pp. 5–12, 2021.

J. Sangeetha and V. Sinthu Janita Prakash, “An Efficient Inclusive Similarity Based Clustering (ISC) Algorithm for Big Data,” Proc. - 2nd World Congr. Comput. Commun. Technol. WCCCT 2017, pp. 84–88, Oct. 2017, doi: 10.1109/WCCCT.2016.29.

A. Chusyairi and P. Ramadar Noor Saputra, “Pengelompokan Data Puskesmas Banyuwangi Dalam Pemberian Imunisasi Menggunakan Metode K-Means Clustering,” Telematika, vol. 12, no. 2, pp. 139–148, 2019, doi: 10.35671/telematika.v12i2.848.

F. T. Informasi, “Segmentasi Pelanggan Menggunakan Analisis RFM Dan Algoritma Fuzzy C-Means Untuk Membantu Pengelolaan Hubungan Pelanggan Customer Segmentation Using Rfm Analysis And Fuzzy-C-Means Algorithm To Help Customer Relationship Management At PT . XYZ,” 2015.

A. Fauzi Sistem Informasi, F. H. Universitas Buana Perjuangan Karawang Jl Ronggowaluyo, T. Timur, and K. priati, “Data Mining dengan Teknik Clustering Menggunakan Algoritma K-Means pada Data Transaksi Superstore,” 2017, Accessed: Apr. 16, 2022. [Online]. Available: http://community.tableau.com.

D. sarjon Juliansa hengki and Sumijan, “Uji Validasi Algoritma Self Organizing Map (SOM) dan K-Mens untuk Pengelompokan Pegawai,” Resti, vol. 1, no. 1, pp. 19–25, 2017.

H. Zarzour, Z. Al-Sharif, M. Al-Ayyoub, and Y. Jararweh, “A new collaborative filtering recommendation algorithm based on dimensionality reduction and clustering techniques,” 2018 9th Int. Conf. Inf. Commun. Syst. ICICS 2018, vol. 2018-January, pp. 102–106, May 2018, doi: 10.1109/IACS.2018.8355449.

D. Andra and A. B. Baizal, “E-commerce Recommender System Using PCA and K-Means Clustering,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 57–63, 2022, doi: 10.29207/resti.v6i1.3782.

B. Basri, W. Gata, and R. Risnandar, “Analisis Loyalitas Pelanggan Berbasis Model Recency, Frequency, dan Monetary (RFM) dan Decision Tree pada PT. Solo,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 5, p. 943, 2020, doi: 10.25126/jtiik.2020752284.

W. Lestari, S. Bina, and B. Kendari, “Clustering Data Mahasiswa Menggunakan Algoritma K-Means Untuk Menunjang Strategi Promosi (Studi Kasus : STMIK Bina Bangsa Kendari),” J. Sist. Inf. dan Sist. Komput., vol. 4, no. 2, pp. 35–48, Jul. 2019, doi: 10.51717/SIMKOM.V4I2.37.

S. Nawrin, M. Rahatur, and S. Akhter, “Exploreing K-Means with Internal Validity Indexes for Data Clustering in Traffic Management System,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 3, 2017, doi: 10.14569/IJACSA.2017.080337.

R. K. Dinata, H. Novriando, N. Hasdyna, and S. Retno, “Reduksi Atribut Menggunakan Information Gain untuk Optimasi Cluster Algoritma K-Means,” J. Edukasi dan Penelit. Inform., vol. 6, no. 1, p. 48, 2020, doi: 10.26418/jp.v6i1.37606.

“Peningkatan Hasil Evaluasi Clustering Davies-Bouldin Index dengan Penentuan Titik Pusat Cluster Awal Algoritma K-Means.” https://repositori.usu.ac.id/handle/123456789/3827 (accessed Jun. 07, 2022).

Published
2022-06-14
How to Cite
Nurhadi, & Puspitarani, Y. (2022). Penerapan Clustering Terhadap Segmentasi Zonasi Gangguan Layanan Pelanggan Dengan Menggunakan Analisis RFM. TEMATIK, 9(1), 21-28. https://doi.org/10.38204/tematik.v9i1.900