Implementasi Model Hybrid CNN-LSTM untuk Optimasi Pengalaman Pengguna Perangkat Seluler
Abstract
This research employs a convolutional neural network (CNN) with long short-term memory (LSTM) to analyse and predict the behaviour of users of mobile devices, utilising a dataset comprising 700 users. The model combines the strengths of convolutional neural networks (CNNs) in spatial feature extraction and long short-term memory (LSTM) networks in temporal sequential analysis. The results demonstrate that the model exhibits excellent performance, with 92% accuracy, 89% precision, 91% recall, and 90% F1 score. The temporal pattern analysis revealed significant variation between the user classes, with the intensive class showing consistently high usage, averaging 300 minutes per day. The key factors influencing the user experience were identified as app usage time (25%), screen on time (22%), and battery consumption (18%). The segmentation of users resulted in the identification of five distinct groups, with Segment 2 exhibiting the highest usage level (6.2 hours per day) and Segment 5 displaying the lowest (1.3 hours per day). The strong correlation (0.89) between app usage time and screen time serves to confirm the importance of optimising the performance of apps. These findings provide a basis for more effective service personalisation and more targeted app development, thereby paving the way for the optimisation of the user experience on mobile devices.
Downloads
References
Global System for Mobile Communications, “Data - GSMA Intelligence,” GSMA.
M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and G. Bauer, “Falling asleep with Angry Birds, Facebook and Kindle: A large scale study on mobile application usage,” in Mobile HCI 2011 - 13th International Conference on Human-Computer Interaction with Mobile Devices and Services, 2011. doi: 10.1145/2037373.2037383.
M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang, “Characterizing geospatial dynamics of application usage in a 3G cellular data network,” in Proceedings - IEEE INFOCOM, 2012. doi: 10.1109/INFCOM.2012.6195497.
S. Thomée, A. Härenstam, and M. Hagberg, “Mobile phone use and stress, sleep disturbances, and symptoms of depression among young adults - A prospective cohort study,” BMC Public Health, vol. 11, 2011, doi: 10.1186/1471-2458-11-66.
K. Hu, J. Jin, F. Zheng, L. Weng, and Y. Ding, “Overview of behavior recognition based on deep learning,” Artif Intell Rev, vol. 56, no. 3, 2023, doi: 10.1007/s10462-022-10210-8.
B. Beltzung, M. Pelé, J. P. Renoult, and C. Sueur, “Deep learning for studying drawing behavior: A review,” 2023. doi: 10.3389/fpsyg.2023.992541.
D. R. Sarvamangala and R. V. Kulkarni, “Convolutional neural networks in medical image understanding: a survey,” Evol Intell, vol. 15, no. 1, pp. 1–22, Mar. 2022, doi: 10.1007/s12065-020-00540-3.
O. D. Annesa, C. Kartiko, and A. Prasetiadi, “Identification of Reptile Species Using Convolutional Neural Networks (CNN),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 5, pp. 899–906, 2020, doi: 10.29207/resti.v4i5.2282.
R. Nurcahyo and M. Iqbal, “Pengenalan Emosi Pembicara Menggunakan Convolutional Neural Networks:,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 115–122, 2022, doi: 10.29207/resti.v6i1.3726.
S. Sautomo and H. F. Pardede, “Prediksi Belanja Pemerintah Indonesia Menggunakan Long Short-Term Memory (LSTM),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 99–106, 2021, doi: 10.29207/resti.v5i1.2815.
A. P. J. Dwitama, D. H. Fudholi, and S. Hidayat, “Indonesian Hate Speech Detection Using Bidirectional Long Short-Term Memory (Bi-LSTM),” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 2, pp. 302–309, 2023, doi: 10.29207/resti.v7i2.4642.
H. Widiputra, A. Mailangkay, and E. Gautama, “Prediksi Indeks BEI dengan Ensemble Convolutional Neural Network dan Long Short-Term Memory,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 3, pp. 456–465, 2021, doi: 10.29207/resti.v5i3.3111.
T. Li, M. Hua, and X. Wu, “A Hybrid CNN-LSTM Model for Forecasting Particulate Matter (PM2.5),” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2971348.
A. U. Rehman, A. K. Malik, B. Raza, and W. Ali, “A Hybrid CNN-LSTM Model for Improving Accuracy of Movie Reviews Sentiment Analysis,” Multimed Tools Appl, vol. 78, no. 18, 2019, doi: 10.1007/s11042-019-07788-7.
S. Zhao et al., “Discovering different kinds of smartphone users through their application usage behaviors,” in UbiComp 2016 - Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016. doi: 10.1145/2971648.2971696.
C. Zhang, P. Patras, and H. Haddadi, “Deep Learning in Mobile and Wireless Networking: A Survey,” IEEE Communications Surveys and Tutorials, vol. 21, no. 3, 2019, doi: 10.1109/COMST.2019.2904897.
Kaggle, “Kaggle: Your Home for Data Science,” Website.
H. H. Satyanegara and K. Ramli, “Implementation of CNN-MLP and CNN-LSTM for MitM Attack Detection System,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 3, pp. 387–396, 2022, doi: 10.29207/resti.v6i3.4035.
S. Saadah, K. M. Auditama, A. A. Fattahila, F. I. Amorokhman, A. Aditsania, and A. A. Rohmawati, “Implementation of BERT, IndoBERT, and CNN-LSTM in Classifying Public Opinion about COVID-19 Vaccine in Indonesia,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, pp. 648–655, 2022, doi: 10.29207/resti.v6i4.4215.
H. Rhomadhona and J. Permadi, “Klasifikasi Berita Kriminal Menggunakan Naïve Bayes Classifier (NBC) dengan Pengujian K-Fold Cross Validation,” Jurnal Sains dan Informatika, vol. 5, no. 2, p. 108, Dec. 2019, doi: 10.34128/jsi.v5i2.177.
T. B. T. Ahmad, K. B. Madarsha, A. M. Zainuddin, N. A. H. Ismail, and M. S. Nordin, “Faculty’s acceptance of computer based technology: Cross-validation of an extended model,” Australasian Journal of Educational Technology, vol. 26, no. 2, pp. 268–279, 2010, doi: 10.14742/ajet.1095.
X. J. Zhang, Z. Li, and H. Deng, “Information security behaviors of smartphone users in China: An empirical analysis,” Electronic Library, vol. 35, no. 6, 2017, doi: 10.1108/EL-09-2016-0183.