Prediksi Harga Material Bangunan Dengan Autoregressive Integrated Moving Average (Arima) Pada CV. TJA
Abstract
The problem most often faced by CV TJA is that the price from the RAB (Cost Budget Plan) calculation is not in accordance with market prices, so it is necessary to predict the price of building materials to help the company prepare the RAB. The aim of this research is to examine predictions of material prices measured using the ARIMA method. The data analysis method in this study used the MA parameter (1) with the ARIMA model (0,1,1) for dynamix cement material, the MA parameter (1) ARIMA model (0,2,1) for cast sand, the MA parameter (1 ) ARIMA model (0,3,1) for threaded iron 13 and AR parameter (2) ARIMA model (2,1,0) for usuk wood material. By using 3 error testing methods, namely Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD) and Mean Squared Deviation (MSD). The results of this analysis show the lowest accuracy value, namely for dynamic cement material with a MAPE value of 5%, a MAD value of 1.986 and an MSD value is 63.584.667. The results of error tests using MAPE, MAD and MSD can be concluded that the ARIMA method is very accurate because the MAPE value is less than 10%.
Downloads
References
L. Perekonomian and P. Bali, “Visi Bank Indonesia.”
I. A. P. S. Mahapatni, Metode Perencanaan Dan Pengendalian Proyek Konstruksi. UNHI PRESS, 2019.
A. Hartanto and D. Sanputra, “Analysis Of Budget Plan ( Rab ) Project As A Planning Tool And Cost Control (Case Study : Pt. Griya Sentosa Property ),” 2020.
V. Marcelin, M. Tisano, T. Arsjad, and G. Y. Malingkas, “Analisis Rencana Anggaran Biaya Pada Proyek Pembangunan Rumah Susun Papua 1 Di Distrik Muara Tami Kota Jayapura Provinsi Papua,” Jurnal Sipil Statik, vol. 9, no. 4, pp. 619–624, 2022.
N. A. Pertiwi and R. Puspasari, “Peramalan Penjualan Kartu Dan Voucher Internet Menggunakan Metode Single Moving Average (Studi Kasus: Toko Karya Pulsa),” InfoSys Journal, 2020.
R. Ayu Wulandari dan Rahmat Gernowo, “Metode Autoregressive Integrated Movingaverage (Arima) Dan Metode Adaptive Neuro Fuzzy Inference System (Anfis) Dalam Analisis Curah Hujan,” vol. 22, no. 1, pp. 41–48, 2019.
I. G. I. Sudipa, R. Riana, I. N. T. A. Putra, C. P. Yanti, and M. D. W. Aristana, “Trend Forecasting of the Top 3 Indonesian Bank Stocks Using the ARIMA Method,” SinkrOn, vol. 8, no. 3, pp. 1883–1893, Jul. 2023, doi: 10.33395/sinkron.v8i3.12773.
M. Zidan Rusminto, S. Adi Wibowo, and F. Santi Wahyuni, “Peramalan Harga Saham Menggunakan Metode Arima (Autoregressive Integrated Moving Average) Time Series,” 2024.
L. M. Malihah and G. T. Meilania, “Perbandingan Model Peramalan Jumlah Pencari Kerja Menggunakan Arima Dan Double Exponential Smoothing,” Jurnal Litbang Sukowati : Media Penelitian dan Pengembangan, vol. 7, no. 2, pp. 169–178, Nov. 2023, doi: 10.32630/sukowati.v7i2.441.
W. Alwi, Adiatma, and Hafsari, “Peramalan Produksi Padi Menggunakan Metode Sarima Di Kabupaten Bone,” Jurnal MSA ( Matematika dan Statistika serta Aplikasinya), vol. 11, no. 2, pp. 16–22, Aug. 2023, doi: 10.24252/msa.v11i2.36163.
F. Nasirudin, M. Pindianti, D. Indah, S. Said, and E. Widodo, “Peramalan Jumlah Produksi Kopi Di Jawa Timur Pada Tahun 2020-2021 Menggunakan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA),” vol. 25, no. 1, 2022, doi: 10.30596/agrium.v25i1.8211.
M. Buchori and T. Sukmono, “Peramalan Produksi Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) di PT. XYZ,” PROZIMA (Productivity, Optimization and Manufacturing System Engineering), vol. 2, no. 1, pp. 27–33, Jun. 2018, doi: 10.21070/prozima.v2i1.1290.
I. G. I. Sudipa, R. Riana, I. N. T. A. Putra, C. P. Yanti, and M. D. W. Aristana, “Trend Forecasting of the Top 3 Indonesian Bank Stocks Using the ARIMA Method,” SinkrOn, vol. 8, no. 3, pp. 1883–1893, Jul. 2023, doi: 10.33395/sinkron.v8i3.12773.
A. Lusiana and P. Yuliarty, “Penerapan Metode Peramalan (Forecasting) Pada Permintaan Atap di PT X.”
N. Salwa, N. Tatsara, R. Amalia, and A. F. Zohra, “Peramalan Harga Bitcoin Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average),” Journal of Data Analysis, vol. 1, no. 1, pp. 21–31, Sep. 2018, doi: 10.24815/jda.v1i1.11874.