Analisis Sentimen Larangan Impor Pakaian Bekas Menggunakan Metode Support Vectore Machine dan Lexicon Based

  • Theresia Hendrawati Institut Bisnis dan Teknologi Indonesia
  • Ni Luh Wiwik Sri Rahayu Ginantra Institut Bisnis dan Teknologi Indonesia https://orcid.org/0000-0003-3731-5981
  • Clarita Mutiara Saiman Institut Bisnis dan Teknologi Indonesia
Keywords: analisis sentimen, twitter, SVM, lexicon based

Abstract

X as a social media platform, provides real-time tweets after the event, making it very relevant for sentiment analysis related to certain topics. This research discusses the prohibition on imports of used clothing in Indonesia using the SVM and Lexicon-based methods. The research aims to determine public sentiment regarding this government policy. The SVM method achieved 85.87% accuracy, with 93.83% recall for positive sentiment and 62.00% recall for negative sentiment. There were 76 wrong positive predictions with a precision of 88.11% and 37 wrong negative predictions with a precision of 77.02%. Meanwhile, the Lexicon Method achieved 60% accuracy, with a positive precision of 69% and a negative precision of 31%. Recall for the negative class is 25%, while for the positive class it is 75%. The results of sentiment analysis applying the Support Vector Machine method to build a classification model resulted in 753 data being successfully classified as positive sentiment, while 147 data were classified as negative sentiment. With different accuracies, it shows that sentiment analysis using the Support Vector Machine method has a higher level of accuracy than Lexicon.

Downloads

Download data is not yet available.

References

Nasrullah, “Analisis Pemanfaatan Media Sosial,” Pancasila: Jurnal Keindonesiaan, vol. 02, no. 1, pp. 71–82, 2015.

D. S. Puspitarini and R. Nuraeni, “Pemanfaatan Media Sosial Sebagai Media Promosi,” Jurnal Common, vol. 3, no. 1, pp. 71–80, 2019, doi: 10.34010/common.v3i1.1950.

Telset.id, “10 Aplikasi Media Sosial Terpopuler di Dunia, Paling Banyak Digunakan.” 2022.

N. M. S. Hadna, I. S. Paulus, and W. Winarno, “Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter,” Seminar Nasional Teknologi Informasi dan Komunikasi, no. March, pp. 1–8, 2016.

D. Suparto and A. Habibullah, “Efektivitas Penggunaan Sosial Media Twitter dalam Penyebaran Informasi dalam Pelayanan Publik,” Indonesian Governance Journal : Kajian Politik-Pemerintahan, vol. 4, no. 2, pp. 161–172, 2021, doi: 10.24905/igj.v4i2.1927.

F. Zahria Emeraldien, R. Jefri Sunarsono, and R. Alit, “Twitter Sebagai Platform Komunikasi Politik Di Indonesia,” Jurnal Teknologi dan Informasi, vol. 14, no. 1, pp. 21–30, 2019, [Online]. Available: www.statisticbrain.com

R. Ariana, “Peraturan Mentri Perdagangan No 40 Tahun 2022,” Permendag, pp. 1–23, 2022.

M. A. Sobirin, “Analisis Sentimen Pemberlakuan Karantina di Masa Covid-19 Pada Media Sosial Twitter di Indonesia Menggunakan Algoritme Support Vector Machine (Svm) Dan Lexicon Based,” Nucl. Phys., vol. 13, no. 1, pp. 104–116, 2023.

R. Mahendrajaya, G. A. Buntoro, and M. B. Setyawan, “Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine,” Komputek, vol. 3, no. 2, p. 52, 2019, doi: 10.24269/jkt.v3i2.270.

F. J. Wahidna and P. Nerisafitra, “Analisis Sentimen Pengguna Sistem Pay Later Menggunakan Support Vector Machine Metode Pembobotan Lexicon,” Journal of Informatics and Computer Science (JINACS), vol. 04, pp. 334–343, 2023, doi: 10.26740/jinacs.v4n03.p334-343.

H. P. P. Zuriel and A. Fahrurozi, “Implementasi Algoritma Klasifikasi Support Vector Machine Untuk Analisa Sentimen Pengguna Twitter Terhadap Kebijakan Psbb,” Jurnal Ilmiah Informatika Komputer, vol. 26, no. 2, pp. 149–162, 2021, doi: 10.35760/ik.2021.v26i2.4289.

A. Nuri, “Implementasi Naïve Bayes dan Support Vector Machine dengan Lexicon Based untuk analisis sentimen pada twitter,” Institutional Repository UIN Syarif Hidayatullah Jakarta, no. 8.5.2017, pp. 2003–2005, 2022.

D. Gunawan, “Evaluasi Performa Pemecahan Database dengan Metode Klasifikasi Pada Data Preprocessing Data mining,” Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika, vol. 2, no. 1, pp. 10–13, 2016, doi: 10.23917/khif.v2i1.1749.

H. Najjichah, A. Sukur, and H. Subagyo, “Pengaruh Text Preprocessing dan Kombinasinya,” Jurnal Teknologi Informasi, vol. 15, no. 1, pp. 1–11, 2019, [Online]. Available: https://download.garuda.kemdikbud.go.id/article.php?article=2887463&val=25402&title=Pengaruh Text Preprocessing dan Kombinasinya Pada Peringkas Dokumen Otomatis Teks Berbahasa Indonesia

A. Amalia, M. S. Lydia, S. D. Fadilla, and M. Huda, “Perbandingan Metode Klaster dan Preprocessing Untuk Dokumen Berbahasa Indonesia,” Jurnal Rekayasa Elektrika, vol. 14, no. 1, pp. 35–42, 2018, doi: 10.17529/jre.v14i1.9027.

Y. Asri, W. N. Suliyanti, D. Kuswardani, and M. Fajri, “Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile,” Petir, vol. 15, no. 2, pp. 264–275, 2022, doi: 10.33322/petir.v15i2.1733.

N. L. W. S. R. Ginantra et al., Machine Learning: Teori dan Metode. 2023.

N. G. Ramadhan and A. Khoirunnisa, “Klasifikasi Data Malaria Menggunakan Metode Support Vector Machine,” Jurnal Media Informatika Budidarma, vol. 5, no. 4, p. 1580, 2021, doi: 10.30865/mib.v5i4.3347.

C. A. Sari, A. Sukmawati, R. P. Aprilli, P. S. Kayaningtias, and N. Yudistira, “Perbandingan Metode Naïve Bayes, Support Vector Machine Dan Decision Tree Dalam Klasifikasi Konsumsi Obat,” Jurnal Litbang Edusaintech, vol. 3, no. 1, pp. 33–41, 2022.

D. Ramadhan and E. B. Setiawan, “Analisis Sentimen Program Acara di SCTV pada Twitter Menggunakan Metode Naive Bayes dan Support Vector Machine,” … .Telkomuniversity.Ac.Id, vol. 6, no. 2, pp. 9736–9743, 2019, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/10708

G. N. Aulia and E. Patriya, “Implementasi Lexicon Based Dan Naive Bayes Pada Analisis Sentimen Pengguna Twitter Topik Pemilihan Presiden 2019,” Jurnal Ilmiah Informatika Komputer, vol. 24, no. 2, pp. 140–153, 2019, doi: 10.35760/ik.2019.v24i2.2369.

M. Al Khadafi, Kurnia Paranitha Kartika, and Filda Febrinita, “Penerapan Metode Naïve Bayes Classifier Dan Lexicon Based Untuk Analisis Sentimen Cyberbullying Pada Bpjs,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 2, pp. 725–733, 2022, doi: 10.36040/jati.v6i2.5633.

D. Hernikawati, “Kecenderungan Tanggapan Masyarakat Terhadap Vaksin Sinovac Berdasarkan Lexicon Based Sentiment Analysis The Trend of Public Response to Sinovac Vaccine Based on Lexicon Based Sentiment Analysis,” Jurnal Ilmu Pengetahuan dan Teknologi Komunikasi, vol. 23, no. 1, pp. 21–31, 2021, [Online]. Available: http://dx.doi.org/10.33169/iptekkom.23.1.2021.21-31

N. S. Fathullah, Y. A. Sari, and P. P. Adikara, “Analisis Sentimen Terhadap Rating dan Ulasan Film dengan menggunakan Metode Klasifikasi Naïve Bayes dengan Fitur Lexicon-Based,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 2, pp. 590–593, 2020, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6987

L. Hermawan and M. Bellaniar Ismiati, “Pembelajaran Text Preprocessing berbasis Simulator Untuk Mata Kuliah Information Retrieval,” Jurnal Transformatika, vol. 17, no. 2, p. 188, 2020, doi: 10.26623/transformatika.v17i2.1705.

Published
2024-06-25
How to Cite
Hendrawati, T., Ginantra, N. L. W. S. R., & Saiman, C. M. (2024). Analisis Sentimen Larangan Impor Pakaian Bekas Menggunakan Metode Support Vectore Machine dan Lexicon Based. TEMATIK, 11(1), 56 - 64. https://doi.org/10.38204/tematik.v11i1.1890