Pengenalan Wajah menggunakan Principle Component Analysis (PCA) dengan Model Algoritma Machine Learning untuk Mengidentifikasi Jenis Kelamin pada Kartu Identitas Mahasiswa
Abstract
Kajian tentang pengenalan wajah sampai saat ini masih banyak orang yang melakukan eksplorasi, hal ini dapat dilihat dari perkembangan teknologi Computer Vision yang diterapkan diberbagai aplikasi kehidupan. Tujuan penelitian ini adalah untuk mengidentifikasi wajah seseorang berdasarkan ciri atau featur jenis kelamin pada kartu identitas mahasiswa di sebuah perguruan tinggi. Metode yang digunakan melalui pendekatan data sains atau machine learning yaitu SEMMA (Sample, Explore, Modify, Model dan Asses) dengan penerapan pemodelan 2 (dua) algoritma yakni Support Vector Machine (SVM) dan Artificial Neural Network (ANN). Namun pemodelan tersebut juga didukung dengan pre-processing dengan teknik Principle Component Analysis (PCA) yang tujuannya mereduksi dimensi dari berbagai fitur gambar yang ada menjadi fitur yang terpilih. Hasil yang diperoleh dari penelitian ini bahwa adanya peningkatan performance pada aspek akurasi 77.50% untuk algoritma SVM dan 78.10%. Perolehan kinerja tersebut lebih baik dari penelitian sebelumnya yang tidak melibatkan teknik dimensi reduksi menggunakan PCA
Downloads
References
S. Singh and S. V. A. V. Prasad, “Techniques and challenges of face recognition: A critical review,” Procedia Comput Sci, vol. 143, pp. 536–543, 2018, doi: 10.1016/j.procs.2018.10.427.
Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, S. Nasrin, and V. K. Asari, “Comprehensive Survey on Deep Learning Approaches,” 2017, [Online]. Available: https://arxiv.org/pdf/1803.01164.pdf
M. A. Marjan, M. R. Islam, M. P. Uddin, M. I. Afjal, and M. al Mamun, “PCA-based dimensionality reduction for face recognition,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 19, no. 5, pp. 1622–1629, 2021, doi: 10.12928/TELKOMNIKA.v19i5.19566.
M. K. Halidu, P. Bagheri-Zadeh, A. Sheikh-Akbari, and R. Behringer, “PCA in the context of Face Recognition with the Image Enlargement Techniques,” 2019 8th Mediterranean Conference on Embedded Computing, MECO 2019 - Proceedings, no. June, pp. 10–14, 2019, doi: 10.1109/MECO.2019.8760162.
S. A. Baker, H. H. Mohammed, and H. A. Aldabagh, “Improving face recognition by artificial neural network using principal component analysis,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 18, no. 6, pp. 3357–3364, 2020, doi: 10.12928/TELKOMNIKA.v18i6.16335.
N. Jamil, S. Iqbal, and N. Iqbal, “Face Recognition Using Neural Networks.”
Y. Wang and Q. Wu, “Research on Face Recognition Technology Based on PCA and SVM,” in 2022 7th International Conference on Big Data Analytics, ICBDA 2022, 2022, pp. 248–252. doi: 10.1109/ICBDA55095.2022.9760320.
S. Pasricha, “Evaluation of Carcass Characteristics of Japanese Quail Using Principal Component Analysis (PCA),” Archives of Anesthesiology and Critical Care, vol. 4, no. 4, pp. 527–534, 2020.
Y. C. See and N. M. Noor, “FACE RECOGNITION USING COMPLETE GABOR FILTER WITH RANDOM FOREST,” vol. 13, no. 13, 2018, Accessed: Aug. 10, 2021. [Online]. Available: www.arpnjournals.com
N. N. A. Mangshor, I. A. A. Majid, S. Ibrahim, and N. Sabri, “A real-time drowsiness and fatigue recognition using support vector machine,” IAES International Journal of Artificial Intelligence, vol. 9, no. 4, pp. 584–590, 2020, doi: 10.11591/ijai.v9.i4.pp584-590.
A. Purbasari, F. R. Rinawan, A. Zulianto, A. I. Susanti, and H. Komara, “CRISP-DM for Data Quality Improvement to Support Machine Learning of Stunting Prediction in Infants and Toddlers,” Proceedings - 2021 8th International Conference on Advanced Informatics: Concepts, Theory, and Application, ICAICTA 2021, no. Ml, 2021, doi: 10.1109/ICAICTA53211.2021.9640294.
R. Immanual et al., “Performance Prediction of solar still using Artificial neural network,” Mater Today Proc, Sep. 2022, doi: 10.1016/j.matpr.2022.08.311.
M. Ozcalici and M. Bumin, “Optimizing filter rule parameters with genetic algorithm and stock selection with artificial neural networks for an improved trading: The case of Borsa Istanbul,” Expert Syst Appl, vol. 208, Dec. 2022, doi: 10.1016/j.eswa.2022.118120.
K. Rusek and P. Guzik, “Two-stage neural network regression of eye location in face images,” Multimed Tools Appl, vol. 75, no. 17, pp. 10617–10630, 2016, doi: 10.1007/s11042-014-2114-z.
J. Estupiñan and M. Santa, “Implementation of algorithms based on support vector machine (SVM) for electric systems topic review,” Tecnura, vol. 20, no. 48, 2016.
P. L. Jackson, “Support vector machines as Bayes’ classifiers,” Operations Research Letters, vol. 50, no. 5, pp. 423–429, Sep. 2022, doi: 10.1016/j.orl.2022.06.003.