Pengelompokkan Data Kemiskinan Provinsi Jawa Barat Menggunakan Algoritma K-Means dengan Silhouette Coefficient

  • Nabila Nur Fransiska R Universitas Singaperbangsa Karawang
  • Dwi Suci Anggraeni Universitas Singaperbangsa Karawang
  • Ultach Enri Universitas Singaperbangsa Karawang
Keywords: data mining, k-means, poverty

Abstract

Serious poverty is still one of the problems in Indonesia, especially in West Java Province. The level of underdevelopment and unemployment is still the basis for poverty. Poverty in each region is certainly different. The government needs to know which areas fall into the categories of high poverty levels and low poverty levels so that they can make solutions to set priorities for assisting. Therefore, a data mining technique is needed that can classify the poverty level of areas in West Java, namely the clustering technique with the K-Means algorithm. The purpose of this research is to classify poverty data in West Java Province so that it can be used as information to determine the right policy to distribute aid to the community from the West Java government. The results obtained based on the test, the clusters obtained were 2 clusters with cluster 0 of the high poverty level in as many as 14 regions and cluster 1 of the low poverty level in as many as 13 regions. Based on the test, the K-Means Algorithm obtains a Silhouette Coefficient of 0.576 and is included in the medium structure category. With the results of grouping poverty data, the government can channel aid more precisely.

Downloads

Download data is not yet available.

References

N. I. Febianto and N. Palasara, “Analisa Clustering K-Means Pada Data Informasi Kemiskinan Di Jawa Barat Tahun 2018,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 8, no. 2, pp. 130–140, 2019, doi: 10.32736/sisfokom.v8i2.653.

F. Andrianti, R. Firmansyah, U. Adhirajasa, R. Sanjaya, A. R. Sanjaya, and D. Mining, “Penerapan Clustering Data Kurang Mampu Di Desa Situmekar Menggunakan Algoritma K-,” vol. 1, no. 1, pp. 88–95, 2020.

C. W. Prasetyandari, “Dampak Covid-19 Bagi Roda Perekonomian Bagi Masyarakat Indonesia,” J. Imagine, vol. 1, no. 1, pp. 12–16, 2021, doi: 10.35886/imagine.v1i1.172.

M. R. Muttaqin and M. Defriani, “Algoritma K-Means untuk Pengelompokan Topik Skripsi Mahasiswa,” Ilk. J. Ilm., vol. 12, no. 2, pp. 121–129, 2020, doi: 10.33096/ilkom.v12i2.542.121-129.

T. M. A. K-means, “Isbn : 2685-5852 fmipa unimus 2019 pemetaan kemiskinan kabupaten/kota di provinsi jawa tengah menggunakan algoritma k-means,” pp. 553–557, 2019.

E. Fammaldo and L. Hakim, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Tingkat Kesejahteraan Keluarga Untuk Program Kartu Indonesia Pintar,” J. Ilm. Teknol. Infomasi Terap., vol. 5, no. 1, pp. 23–31, 2019, doi: 10.33197/jitter.vol5.iss1.2018.249.

R. Hidayat, R. Wasono, and M. Y. Darsyah, “Pengelompokan Kabupaten/Kota Di Jawa Tengah Menggunakan Metode K-Means Dan Fuzzy C-Means,” Pros. Semin. Nas. Int., no., pp. 240–250, 2017, [Online]. Available: https://jurnal.unimus.ac.id/index.php/psn12012010/article/view/3017/2932.

Purnia Silvi Dini, “Indonesian Journal of Computer Science,” STMIK Indones. Padang, vol. 6, no. 1, p. 62, 2020.

A. Bahauddin, A. Fatmawati, and F. Permata Sari, “Analisis Clustering Provinsi Di Indonesia Berdasarkan Tingkat Kemiskinan Menggunakan Algoritma K-Means,” J. Manaj. Inform. dan Sist. Inf., vol. 4, no. 1, p. 1, 2021, doi: 10.36595/misi.v4i1.216.

I. Nasution, A. P. Windarto, and M. Fauzan, “Penerapan Algoritma K-Means Dalam Pengelompokan Data Penduduk Miskin Menurut Provinsi,” Build. Informatics, Technol. Sci., vol. 2, no. 2, pp. 76–83, 2020, doi: 10.47065/bits.v2i2.492.

A. R. Wibowo and A. Jananto, “Implementasi Data Mining Metode Asosiasi Algoritma FP-Growth Pada Perusahaan Ritel,” Inspir. J. Teknol. Inf. dan Komun., vol. 10, no. 2, p. 200, 2020, doi: 10.35585/inspir.v10i2.2585.

D. Dharmayanti, A. M. Bachtiar, and A. C. Prasetyo, “Penerapan Metode Clustering Untuk Membentuk Kelompok Belajar Menggunakan Di Smpn 19 Bandung,” Komputa J. Ilm. Komput. dan Inform., vol. 6, no. 2, pp. 49–56, 2017, doi: 10.34010/komputa.v6i2.2477.

Yuni Radana Sembiring, Saifullah, and Riki Winanjaya, “Implementasi Data Mining Dalam Mengelompokkan Jumlah Penduduk Miskin Berdasarkan Provinsi Menggunakan Algoritma,” KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen) Vol. 2, No. 2, vol. 2, no. 2, pp. 125–132, 2021.

N. Mirantika, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Penyebaran Covid-19 di Provinsi Jawa Barat,” Nuansa Inform., vol. 15, no. 2, pp. 92–98, 2021, doi: 10.25134/nuansa.v15i2.4321.

R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient di Puskesmas Karangsambung,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 109–116, 2021, doi: 10.30871/jaic.v5i1.3237.

Published
2022-06-14
How to Cite
R, N. N. F., Anggraeni, D. S., & Enri, U. (2022). Pengelompokkan Data Kemiskinan Provinsi Jawa Barat Menggunakan Algoritma K-Means dengan Silhouette Coefficient . Tematik : Jurnal Teknologi Informasi Komunikasi (e-Journal), 9(1), 29-35. https://doi.org/10.38204/tematik.v9i1.901