Analisis Sentimen Covid-19 Pada Media Sosial Dengan Model Neural Machine Translation
Abstract
Sentiment analysis, also known as opinion mining. Social media offers users to share their conditions and opinions in their daily lives. Much of the vast amount of textual content is currently available and techniques are needed to make meaningful use of the information by separating and examining it. Sentimental analysis can explore the opinions of social media users from the point of view. During the Covid-19 pandemic, the whole world is giving comments on social media. This study aims to understand the awareness and public perception of the Indonesian people about issues related to Covid-19 on social media. Data mining was carried out on comments from users of social media accounts kawalcovid19, opponentcovid19 id, and the ministry of health with a total of 54,250 comments divided into 32,494 in the first week and 21,756 in the second week. The research method of analyzing the data includes data processing and sentiment exploration analysis. Sentiment distribution results based on the first week were positive 75.68%, neutral 16.3%, negative 13.41% while the second week was positive 80.14%, neutral 9.03%, negative 4.84%. The results are the majority of comments in Indonesian and a mixed language. Sentiment analysis shows the positive reaction of the public to the front line and all the efforts of the health ministry in fighting the pandemic. This study concludes that sentiment analysis has proven to be very effective in producing useful knowledge in the discussion of Covid-19, especially on social media, gathering public perceptions and responses about the government's Covid-19 efforts, and providing a different point of view from the current situation on the ground.
Downloads
References
R. Nuraini, “Kasus Covid-19 Pertama, Masyarakat Jangan Panik,” https://indonesia.go.id/, 2020. [Online]. Available: https://indonesia.go.id/narasi/indonesia-dalam-angka/ekonomi/kasus-covid-19-pertama-masyarakat-jangan-panik. [Accessed: 02-Apr-2022].
S. T. P. Covid-19, “Analisis Data COVID-19 Indonesia (Update Per 20 Desember 2020),” https://covid19.go.id, 2020. [Online]. Available: https://covid19.go.id/p/berita/analisis-data-covid-19-indonesia-update-20-desember-2020. [Accessed: 01-Jan-2022].
Z. Munawar, Y. Herdiana, Y. Suharya, and N. I. Putri, “Pemanfaatan Teknologi Digital Di Masa Pandemi Covid-19,” Temat. J. Teknol. Inf. Komun., vol. 8, no. 2, pp. 160–175, Dec. 2021.
G. StatCounter, “Social Media Stats Indonesia,” https://gs.statcounter.com, 2022. [Online]. Available: https://gs.statcounter.com/social-media-stats/all/indonesia.
Z. Munawar, N. Indah Putri, and D. Zainal Musadad, “Meningkatkan Rekomendasi Menggunakan Algoritma Perbedaan Topik,” J-SIKA|Jurnal Sist. Inf. Karya Anak Bangsa, vol. 2, no. 02 SE-, pp. 17–26, 2021.
Z. Munawar, “Keamanan Pada E-Commerce Usaha Kecil dan Menengah,” Tematik, vol. 5, no. 1, pp. 1–16, 2018.
Z. Munawar, M. I. Fudsyi, and D. Z. Musadad, “Perancangan Interface Aplikasi Pencatatan Persediaan Barang Di Kios Buku Palasari Bandung Dengan Metode User Centered Design Menggunakan Balsamiq Mockups,” J. Inform., vol. 6, no. 2, pp. 10–20, 2019.
Z. Munawar, “Penggunaan Profil Media Sosial Untuk Memprediksi Kepribadian,” Temat. - J. Teknol. Inf. dan Komun., vol. 4, no. 2 SE-Articles, pp. 18–37, Dec. 2017.
QSR International, “About NCapture,” NVivo 11 for Windows Help, 2020. [Online]. Available: https://help-nv11.qsrinternational.com/desktop/concepts/about_ncapture.htm.
Z. Munawar and N. I. Putri, “Keamanan IoT Dengan Deep Learning dan Teknologi Big Data,” Temat. - J. Teknol. Inf. dan Komun., vol. 7, no. 2, pp. 161–185, Dec. 2020.
Z. Munawar, “Perbaikan Teknis Sistem Pencatatan Persediaan Barang Berbasis Komputer Bagi Pedagang Buku Pasar Palasari Kota Bandung Menghadapi Era Pasar Kompetitif,” JAST J. Apl. Sains dan Teknol., vol. 4, no. 1, p. 52, 2020.
N. I. Putri, “Keamanan Basis Data Berdasarkan Teori Himpunan,” J-SIKA|Jurnal Sist. Inf. Karya Anak Bangsa, vol. 3, no. 2, pp. 45–52, Dec. 2021.
B. Liu, Sentiment Analysis and Opinion Mining, no. May. Morgan & Claypool Publishers, 2012.
Z. Munawar, “Aplikasi Registrasi Seminar Berbasis Web Menggunakan QR Code pada Universitas XYZ,” Temat. J. Teknol. Inf. Dan Komun., vol. 6, no. 2, pp. 68–77, 2019.
N. I. Putri, Rustiyana, Y. Herdiana, and Z. Munawar, “Pentingnya Menjaga Privasi Data Di Masa Pandemi Covid-19,” Temat. J. Teknol. Inf. Komun., vol. 8, no. 2, pp. 202–216, Dec. 2021.
C. Shen, A. Chen, C. Luo, J. Zhang, B. Feng, and W. Liao, “Using Reports of Symptoms and Diagnoses on Social Media to Predict COVID-19 Case Counts in Mainland China: Observational Infoveillance Study,” J Med Internet Res, vol. 22, no. 5, p. e19421, 2020.
C. Huang et al., “Mining the Characteristics of COVID-19 Patients in China: Analysis of Social Media Posts,” J. Med. Internet Res., vol. 22, no. 5, pp. e19087–e19087, May 2020.
Z. Munawar, “Mekanisme keselamatan, keamanan dan keberlanjutan untuk sistem siber fisik,” J. Teknol. Inf. Dan Komun., vol. 7, no. 1, pp. 58–87, 2020.
A. Sciandra, “COVID-19 Outbreak through Tweeters’ Words: Monitoring Italian Social Media Communication about COVID-19 with Text Mining and Word Embeddings,” in Proceedings - IEEE Symposium on Computers and Communications, 2020, vol. 2020-July, pp. 1–6.
H. M. S. Aung and W. P. Pa, “Analysis of Word Vector Representation Techniques with Machine-Learning Classifiers for Sentiment Analysis of Public Facebook Page’s Comments in Myanmar Text,” in 2020 IEEE Conference on Computer Applications, ICCA 2020, 2020, pp. 1–7.
Z. Munawar, N. Suryana, Z. B. Sa’aya, and Y. Herdiana, “Framework With An Approach To The User As An Evaluation For The Recommender Systems,” in 2020 Fifth International Conference on Informatics and Computing (ICIC), 2020, pp. 1–5.
Y. Suharya, Y. Herdiana, N. I. Putri, and Z. Munawar, “Sistem Rekomendasi Untuk Toko Online Kecil Dan Menengah,” Temat. J. Teknol. Inf. Komun., vol. 8, no. 2, pp. 176–185, Dec. 2021.
Z. Munawar, “Meningkatkan Kinerja Individu melalui Kritik/Saran menggunakan Recommender System,” Temat. - J. Teknol. Inf. dan Komun., vol. 6, no. 1, pp. 20–37, Jun. 2019.
A. Ceron, L. Curini, and S. M. Iacus, “ISA: A fast, scalable and accurate algorithm for sentiment analysis of social media content,” Inf. Sci. (Ny)., vol. 367–368, pp. 105–124, 2016.
Z. Munawar, “Manfaat Teknologi Informasi di Masa Pandemi Covid-19,” J-SIKA|Jurnal Sist. Inf. Karya Anak Bangsa, vol. 3, no. 2, pp. 53–63, Dec. 2021.
S. Raheja and A. Asthana, “Sentimental analysis of twitter comments on COVID-19,” in Proceedings of the Confluence 2021: 11th International Conference on Cloud Computing, Data Science and Engineering, 2021, pp. 704–708.