Keamanan IoT Dengan Deep Learning dan Teknologi Big Data

Keywords: Keamanan IoT, Deep Learning, Big Data

Abstract

Saat ini dalam kehidupan manusia sangat tergantung dengan teknologi , apalagi ditunjang dengan perkembangan dari Internet of Things (IoT), yang memungkinkan komunikasi dan interaksi dengan berbagai perangkat. Namun demikian terdapat kelemahan dimana IoT terbukti rentan terhadap pelanggaran keamanan. Oleh karena itu, perlu dikembangkan solusi dengan menciptakan teknologi baru atau menggabungkan teknologi yang sudah ada untuk mengatasi masalah keamanan. Deep learning, sebagai cabang machine learning telah menunjukkan hasil yang menjanjikan dalam penelitian sebelumnya untuk mendeteksi pelanggaran keamanan. Selain itu, perangkat IoT menghasilkan volume yang besar, variasi, dan kebenaran data. Dengan demikian, ketika teknologi big data dimasukkan, kinerja yang lebih tinggi dan penanganan data yang lebih baik dapat dicapai. Berbagai penelitian telah dilakukan secara komprehensif tentang deep learning, keamanan IoT, dan teknologi big data. Selanjutnya, analisis komparatif dan hubungan antara machine learning, keamanan IoT, dan teknologi big data juga telah dibahas. Taksonomi tematik dilakukan dari analisis komparatif studi teknis dari tiga domain tersebut. Penelitian ini mengidentifikasi dan mendiskusikan tantangan dalam menggabungkan deep learning untuk keamanan IoT menggunakan teknologi big data dan telah memberikan masukan berupa saran untuk penelitian yang akan datang.

Downloads

Download data is not yet available.

References

Adam, K., Fakharaldien, M. A. I., Zain, J. M., Majid, M. A., & Noraziah, A. (2019). BigData: Issues, Challenges, Technologies and Methods. Lecture Notes in Electrical Engineering, 520(April), 541–550. https://doi.org/10.1007/978-981-13-1799-6_56

Ahmed, M., Naser Mahmood, A., & Hu, J. (2016). A survey of network anomaly detection techniques. Journal of Network and Computer Applications, 60, 19–31. https://doi.org/10.1016/j.jnca.2015.11.016

Alotaibi, B., & Alotaibi, M. (2020). A Stacked Deep Learning Approach for IoT Cyberattack Detection. Journal of Sensors, 2020. https://doi.org/10.1155/2020/8828591

Apark.apache.org. (2019). Spark Security. Retrieved October 12, 2020, from https://spark.apache.org/docs/latest/security.html

Ariyaluran Habeeb, R. A., Nasaruddin, F., Gani, A., Amanullah, M. A., Abaker Targio Hashem, I., Ahmed, E., & Imran, M. (2019). Clustering-based real-time anomaly detection—A breakthrough in big data technologies. Transactions on Emerging Telecommunications Technologies, (January), 1–27. https://doi.org/10.1002/ett.3647

Ariyaluran Habeeb, R. A., Nasaruddin, F., Gani, A., Targio Hashem, I. A., Ahmed, E., & Imran, M. (2019). Real-time big data processing for anomaly detection: A Survey. International Journal of Information Management, 45(August), 289–307. https://doi.org/10.1016/j.ijinfomgt.2018.08.006

Avast Security News Team. (2019). Sea turtle dns hijacking and more weekly news. Retrieved from https://blog.avast.com/sea-turtle-dns-hijacking

Azmoodeh, A., Dehghantanha, A., & Choo, K. K. R. (2019). Robust Malware Detection for Internet of (Battlefield) Things Devices Using Deep Eigenspace Learning. IEEE Transactions on Sustainable Computing, 4(1), 88–95. https://doi.org/10.1109/TSUSC.2018.2809665

Beaumont-Gay, M. (2007). A Comparison of Syn Flood Detection Algorithms. Second International Conference on Internet Monitoring and Protection (ICIMP 2007), 9. https://doi.org/10.1109/icimp.2007.1

Bijalwan, A. (2015). Forensics of Random-udp Flooding Attacks. Journal of Networks, 10(5), 287. https://doi.org/10.4304/jnw.10.5.287-293

Bipraneel, R. (2018). A Deep Learning Approach for Intrusion Detection in Internet of Things using Bi-directional Long Short-Term Memory Recurrent Neural Network. 2018 28th International Telecommunication Networks and Applications Conference (ITNAC), 1–6.

Borthakur, D., Gray, J., Sarma, J. Sen, Muthukkaruppan, K., Spiegelberg, N., Kuang, H., … Aiyer, A. (2011). Apache hadoop goes realtime at Facebook. Proceedings of the ACM SIGMOD International Conference on Management of Data, 1071–1080. https://doi.org/10.1145/1989323.1989438

Carbone, P. (2015). Apache Flink: Stream and Batch Processing in a Single Engine. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 36, 4.

Cárdenas, A. A., Mcdaniel, P., Smith, S. W., Manadhata, P. K., Hp, |, Sreeranga, L., & Rajan, P. (2013). Big Data Analytics for Security. (December), 74–76.

Ceron, J. M., Steding-Jessen, K., Hoepers, C., Granville, L. Z., & Margi, C. B. (2019). Improving iot botnet investigation using an adaptive network layer. Sensors (Switzerland), 19(3), 1–16. https://doi.org/10.3390/s19030727

Chakrabarti, S., & Singhal, M. (2007). Preventing Offline Dictionary Attacks. 40(6), 68–74. https://doi.org/10.1109/mc.2007.216

Chebotko, A. (2015). A Big Data Modeling Methodology for Apache Cassandra. IEEE International Congress on Big Data, 238–245. IEEE.

Cimpanu, C. (2018). SirenJack Attack Lets Hackers Take Control Over Emergency Alert Sirens. Retrieved September 19, 2020, from https://www.bleepingcomputer.com/news/security/sirenjack-attack-lets-hackers-take-control-over-emergency-alert-sirens/

Dawoud, A., Shahristani, S., & Raun, C. (2018). Deep learning and software-defined networks: Towards secure IoT architecture. Internet of Things, 3–4, 82–89. https://doi.org/10.1016/j.iot.2018.09.003

Elsaeidy, A., Elgendi, I., Munasinghe, K. S., Sharma, D., & Jamalipour, A. (2017). A smart city cyber security platform for narrowband networks. 2017 27th International Telecommunication Networks and Applications Conference, ITNAC 2017, 2017-Janua, 1–6. https://doi.org/10.1109/ATNAC.2017.8215388

Gajek, S., Jensen, M., Liao, L., & Schwenk, J. (2009). Analysis of signature wrapping attacks and countermeasures. 2009 IEEE International Conference on Web Services, ICWS 2009, 575–582. https://doi.org/10.1109/ICWS.2009.12

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007

Gao, W., Morris, T., Reaves, B., & Richey, D. (2010). On SCADA control system command and response injection and intrusion detection. General Members Meeting and ECrime Researchers Summit, ECrime 2010, 1–9. https://doi.org/10.1109/ecrime.2010.5706699

Gruschka, N., & Jensen, M. (2010). Attack surfaces: A taxonomy for attacks on cloud services. Proceedings - 2010 IEEE 3rd International Conference on Cloud Computing, CLOUD 2010, 276–279. https://doi.org/10.1109/CLOUD.2010.23

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48. https://doi.org/10.1016/j.neucom.2015.09.116

Gupta, A., Thakur, H. K., Shrivastava, R., Kumar, P., & Nag, S. (2017). A Big Data Analysis Framework Using Apache Spark and Deep Learning. IEEE International Conference on Data Mining Workshops, ICDMW, 2017-Novem(1), 9–16. https://doi.org/10.1109/ICDMW.2017.9

HaddadPajouh, H., Dehghantanha, A., Khayami, R., & Choo, K. K. R. (2018). A deep Recurrent Neural Network based approach for Internet of Things malware threat hunting. Future Generation Computer Systems, 85, 88–96. https://doi.org/10.1016/j.future.2018.03.007

He, Y., Mendis, G. J., & Wei, J. (2017). Real-Time Detection of False Data Injection Attacks in Smart Grid: A Deep Learning-Based Intelligent Mechanism. IEEE Transactions on Smart Grid, 8(5), 2505–2516. https://doi.org/10.1109/TSG.2017.2703842

Herley, C., & Florêncio, D. (2008). Protecting financial institutions from brute-force attacks. IFIP International Federation for Information Processing, 278, 681–685. https://doi.org/10.1007/978-0-387-09699-5_45

Homayoun, S., Dehghantanha, A., Ahmadzadeh, M., Hashemi, S., Khayami, R., Choo, K. K. R., & Newton, D. E. (2019). DRTHIS: Deep ransomware threat hunting and intelligence system at the fog layer. Future Generation Computer Systems, 90, 94–104. https://doi.org/10.1016/j.future.2018.07.045

Hossain, M. M. (2015). Towards an Analysis of Security Issues, Challenges, and Open Problems in The Internet of Things. 015 IEEE World Congress on Services, 21–28.

Hsieh, C. J., & Chan, T. Y. (2016). Detection DDoS attacks based on neural-network using Apache Spark. 2016 International Conference on Applied System Innovation, IEEE ICASI 2016, 1–4. https://doi.org/10.1109/ICASI.2016.7539833

Huang, G. (2014). Semi-Supervised and Unsupervised Extreme Learning Machines. IEEE Transactions on Cybernetics, 4(12), 2405–2417.

Hussain, R., & Abdullah, I. (2018). Review of Different Encryptionand Decryption Techniques Used for Security and Privacy of IoT in Different Applications. 2018 6th IEEE International Conference on Smart Energy Grid Engineering, SEGE 2018, 293–297. https://doi.org/10.1109/SEGE.2018.8499430

J. Horchert. (2013). Mapping the internet: A hacker’s secret internet census - spiegel online - international. Retrieved from https://www.spiegel.de/international/world/hacker-measures-the-internet-illegally-with-carna-botnet-a-890413.html

Jim, T., Swamy, N., & Hicks, M. (2007). Defeating script injection attacks with browser-enforced embedded policies. 16th International World Wide Web Conference, WWW2007, 601–610. https://doi.org/10.1145/1242572.1242654

Kannhavong, B., Nakayama, H., Nemoto, Y., Kato, N., & Jamalipour, A. (2007). A survey of routing attacks in mobile ad hoc networks. IEEE Wireless Communications, 14(5), 85–91. https://doi.org/10.1109/MWC.2007.4396947

Kara, I., & Aydos, M. (2019). Static and Dynamic Analysis of Third Generation Cerber Ransomware. International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism, IBIGDELFT 2018 - Proceedings, 12–17. https://doi.org/10.1109/IBIGDELFT.2018.8625353

Katal, A., Wazid, M., & Goudar, R. H. (2013). Big Data: Issues, Challenges, Tools and Good Practices. 2013 6th International Conference on Contemporary Computing, IC3 2013, 404–409. https://doi.org/10.1109/IC3.2013.6612229

Kc, G. S. (2003). Countering Code-Injection Attacks With Instruction-Set Randomization. Proceedings of the 10th ACM Conference on Computer and Communications Security, 272–280. Retrieved from https://sci-hub.do/10.1145/948109.948146

Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82, 395–411. https://doi.org/10.1016/j.future.2017.11.022

Khattak, H. A., Shah, M. A., Khan, S., Ali, I., & Imran, M. (2019). Perception layer security in Internet of Things. Future Generation Computer Systems, 100, 144–164. https://doi.org/10.1016/j.future.2019.04.038

Khumoyun, A., Cui, Y., & Hanku, L. (2016). Spark based distributed Deep Learning framework for Big Data applications. 2016 International Conference on Information Science and Communications Technologies, ICISCT 2016, 1–5. https://doi.org/10.1109/ICISCT.2016.7777390

Kiezun, A., Guo, P. J., Jayaraman, K., & Ernst, M. D. (2009). Automatic creation of SQL injection and cross-site scripting attacks. Proceedings - International Conference on Software Engineering, 199–209. https://doi.org/10.1109/ICSE.2009.5070521

Kleinman, A. (2017). The most detailed map of the internet was made by breaking the law. Retrieved from https://www.huffpost.com/entry/internet-map_n_2926934

Komalasari, R. (2020). Manfaat Teknologi Informasi Dan Komunikasi Di Masa Pandemi Covid 19. Tematik, 7(1), 38–50. https://doi.org/10.38204/tematik.v7i1.369

Kozik, R. (2018). Distributing extreme learning machines with Apache Spark for NetFlow-based malware activity detection. Pattern Recognition Letters, 101, 14–20. https://doi.org/10.1016/j.patrec.2017.11.004

Liou, C. Y., Huang, J. C., & Yang, W. C. (2008). Modeling word perception using the Elman network. Neurocomputing, 71(16–18), 3150–3157. https://doi.org/10.1016/j.neucom.2008.04.030

Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W., Kendall, K. R., McClung, D., … Zissman, M. A. (2000). Evaluating intrusion detection systems: The 1998 DARPA off-line intrusion detection evaluation. Proceedings - DARPA Information Survivability Conference and Exposition, DISCEX 2000, 2, 12–26. https://doi.org/10.1109/DISCEX.2000.821506

Liu, J., Xiao, Y., & Chen, C. L. P. (2012). Authentication and access control in the Internet of things. Proceedings - 32nd IEEE International Conference on Distributed Computing Systems Workshops, ICDCSW 2012, 588–592. https://doi.org/10.1109/ICDCSW.2012.23

Marir, N. (2018). Distributed Abnormal Behavior Detection Approach Based on Deep Belief Network and Ensemble SVM using Spark. IEEE Access, 59657–59671.

Marjani, M. (2017). Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges. IEEE Access, 5247–5261.

Mavridis, I., & Karatza, H. (2017). Performance evaluation of cloud-based log file analysis with Apache Hadoop and Apache Spark. Journal of Systems and Software, 125, 133–151. https://doi.org/10.1016/j.jss.2016.11.037

Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher, D., & Elovici, Y. (2018). N-BaIoT-Network-based detection of IoT botnet attacks using deep autoencoders. IEEE Pervasive Computing, 17(3), 12–22. https://doi.org/10.1109/MPRV.2018.03367731

Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., & Rajarajan, M. (2013). A survey of intrusion detection techniques in Cloud. Journal of Network and Computer Applications, 36(1), 42–57. https://doi.org/10.1016/j.jnca.2012.05.003

Mohammadi, M. (2018). Deep Learning for IoT Big Data and Streaming Analytics: A Survey. IEEE Communications Surveys & Tutorials, 20(4), 2923–2960.

Moustafa, N., Slay, J., & Technology, I. (2015). Unsw-nb15: a comprehensive data set for network intrusion detection systems [157] N. Moustafa, J. Slay, Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). Proceeding Military Communications and Information Systems Conference (MilCIS), 1–6. https://doi.org/10.1109/MilCIS.2015.7348942

Munawar, Zen and Putri, N. I. (2020). Keamanan Jaringan Komputer Pada Era Big Data. J-SIKA| Jurnal Sistem Informasi Karya Anak Bangsa, 02(01), 14–20.

Mylavarapu, G. (2015). Real-time Hybrid Intrusion Detection System using Apache Storm. High Performance Computing and Communications IEEE 7th Int. Symp. Cyberspace Safety and Security Conf. Embedded Software and Systems, 1436–1441. https://doi.org/10.1109/HPCC-CSS-ICESS.2015.241

Nobakht, M., Sivaraman, V., & Boreli, R. (2016). A host-based intrusion detection and mitigation framework for smart home IoT using OpenFlow. Proceedings - 2016 11th International Conference on Availability, Reliability and Security, ARES 2016, 147–156. https://doi.org/10.1109/ARES.2016.64

Radoglou Grammatikis, P. I., Sarigiannidis, P. G., & Moscholios, I. D. (2019). Securing the Internet of Things: Challenges, threats and solutions. Internet of Things, 5, 41–70. https://doi.org/10.1016/j.iot.2018.11.003

Rav, D., Wong, C., Lo, B., & Yang, G. (2017). Deep Learning Approach to on-Node SensorData Analytics for Mobile or Wearable Devices. IEEE Journal of Biomedical and Health Informatics, 12(1), 106–137. https://doi.org/10.1109/JBHI.2016.2633287

Roopak, M., Yun Tian, G., & Chambers, J. (2019). Deep learning models for cyber security in IoT networks. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference, CCWC 2019, 452–457. https://doi.org/10.1109/CCWC.2019.8666588

Saxe, J. (2015). Deep Neural Network Based Malware Detection using Two Dimensional Binary Program Features. 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), 11–20. Retrieved from https://dl.acm.org/doi/10.1109/MALWARE.2015.7413680

Schiffer, A. (2017). How a fish tank helped hack a casino. Retrieved November 2, 2020, from https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-helped-hack-a-casino/

Smith, D. F., Wiliem, A., & Lovell, B. C. (2015). Face recognition on consumer devices: Reflections on replay attacks. IEEE Transactions on Information Forensics and Security, 10(4), 736–745. https://doi.org/10.1109/TIFS.2015.2398819

Sood, A. K. (2013). Crimeware-as-a-service—a Survey of Commoditized Crimeware in The Underground Market. International Journal of Critical Infrastructure Protection, 6(1), 28–38. https://doi.org/10.1016/j.ijcip.2013.01.002

Stolfo, S. J., Fan, W., Lee, W., Prodromidis, A., & Chan, P. K. (2000). Cost-based modeling for fraud and intrusion detection: Results from the JAM project. Proceedings - DARPA Information Survivability Conference and Exposition, DISCEX 2000, 2, 130–144. https://doi.org/10.1109/DISCEX.2000.821515

Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M. (2016). Deep learning approach for Network Intrusion Detection in Software Defined Networking. Proceedings - 2016 International Conference on Wireless Networks and Mobile Communications, WINCOM 2016: Green Communications and Networking, 258–263. https://doi.org/10.1109/WINCOM.2016.7777224

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A Detailed Analysis of the KDD CUP 99 Data Set. Proc. IEEE Symp. Computational Intelligence for Security and Defense Applications, (Cisda), 1–6. Retrieved from https://sci-hub.do/10.1109/CISDA.2009.5356528

Thilina, A. (2016). Intruder Detection using Deep Learning and Association Rule Mining. 2016 IEEE International Conference on Computer and Information Technology (CIT), 615–620.

Trifa, Z., & Khemakhem, M. (2014). Sybil nodes as a mitigation strategy against sybil attack. Procedia Computer Science, 32, 1135–1140. https://doi.org/10.1016/j.procs.2014.05.544

Vavilapalli, V., Murthy, A., … C. D.-P. of the 4th, & 2013, U. (2013). Apache hadoop yarn: Yet another resource negotiator Big Data Resources Scheduling. The 4th Annual Symposium on Cloud Computing, 1–16. Retrieved from https://dl.acm.org/citation.cfm?id=2523633

Veen, J. S. van der. (2015). Dynamically Scaling Apache Storm for The Analysis of Streaming Data. 2015 IEEE First International Conference on Big Data Computing Service and Applications, 154–161. IEEE.

Vimalkumar, K., & Radhika, N. (2017). A big data framework for intrusion detection in smart grids using apache spark. 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017, 2017-Janua, 198–204. https://doi.org/10.1109/ICACCI.2017.8125840

Vinayakumar, R. (2019). Deep Learning approach for Intelligent Intrusion Detection System. IEEE Access, 41525–41550.

Wang, W. (2017). Hast-ids: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access, 1792–1806. https://doi.org/10.1109/ACCESS.2017.2780250

Zaharia, M. (2016). Apache spark: a unified engine for big data processing. Communications of the ACM, 59(ACM), 56–65.

Published
2020-12-29
How to Cite
Zen Munawar, & Novianti Indah Putri. (2020). Keamanan IoT Dengan Deep Learning dan Teknologi Big Data . TEMATIK, 7(2), 161-185. https://doi.org/10.38204/tematik.v7i2.479