Studi Komparatif Algoritma Machine Learning dengan Teknik Bagging dan AdaBoost pada Klasifikasi Kanker Payudara

Authors

DOI:

https://doi.org/10.38204/tematik.v12i1.2435

Keywords:

Accuracy, Adaboost, AUC, Bagging, Breast Cancer, Machine Learning

Abstract

This study aims to evaluate and compare the performance of five Machine Learning classification algorithms—Support Vector Machine (SVM), Neural Network (NN), Logistic Regression (LR), Decision Tree (DT), and K-Nearest Neighbors (KNN)—in detecting breast cancer using the Breast Cancer Wisconsin (Diagnostic) dataset. The evaluation was conducted in stages, beginning with baseline model training, followed by optimization using Bagging ensemble techniques, and further enhanced with the Adaboost algorithm. Model performance was assessed using accuracy, confusion matrix, ROC curve, and Area Under Curve (AUC) metrics. The results show that Logistic Regression demonstrated the most consistent performance, achieving 97.1% accuracy and the highest AUC of 99.7% after Adaboost was applied. Decision Tree also showed noticeable improvement in both accuracy and AUC. In contrast, Neural Network and KNN models were found incompatible with Adaboost. These findings highlight that the effectiveness of ensemble techniques is highly dependent on the nature of the base algorithm. This research contributes to a better understanding of how to select and combine classification algorithms with appropriate optimization strategies to improve the accuracy of breast cancer diagnosis.

 

Downloads

Download data is not yet available.

References

G. Arther Sandag, “A Prediction Model Of Company Health Using Bagging Classifier,” vol. 6, no. 1, 2020, doi: 10.33480/jitk.v6i1.1390.

H. J. Yoon et al., “Accelerated training of bootstrap aggregation-based deep information extraction systems from cancer pathology reports,” J. Biomed. Inform., vol. 110, Oct. 2020, doi: 10.1016/j.jbi.2020.103564.

A. H. Yunial, “Optimization Analysis of Support Vector Machine Classification Algorithms, Decision Trees, and Neural Networks Using Adaboost and Bagging,” J. Inform. Univ. Pamulang, vol. 5, no. 3, p. 247, Sep. 2020, doi: 10.32493/informatika.v5i3.6609.

A. Kurniawan and A. Prihandono, “Application Of Bagging Techniques To Improve Classification Accuracy In The Naive Bayes Algorithm In Determining Professional Bloggers,” 2020.

Y. L. Nursimpati and A. Saifudin, “Application of Naïve Bayes-Based Bagging Technique for Student Admissions Selection,” vol. 4, no. 2, pp. 2622–4615, 2019, [Online]. Available: http://openjournal.unpam.ac.id/index.php/informatika65

R. du Plooy and P. J. Venter, “A Comparison of Artificial Neural Networks and Bootstrap Aggregating Ensembles in a Modern Financial Derivative Pricing Framework,” J. Risk Financ. Manag., vol. 14, no. 6, p. 254, Jun. 2021, doi: 10.3390/jrfm14060254.

S. Al-Dahidi, P. Baraldi, E. Zio, and M. Lorenzo, “Bootstrapped ensemble of artificial neural networks technique for quantifying uncertainty in prediction of wind energy production,” Sustain., vol. 13, no. 11, Jun. 2021, doi: 10.3390/su13116417.

C. O. Siti Fatihah et al., “The effect of aggregating bootstrap on the accuracy of neural network system for islamic investment prediction,” Univers. J. Account. Financ., vol. 9, no. 4, pp. 604–612, Aug. 2021, doi: 10.13189/ujaf.2021.090408.

R. Pramudita, Solikin, and N. Safitri, “Optimization Analysis of Neural Network Algorithms Using Bagging Techniques on Classification of Date Fruit Types,” in Seventh International Conference on Informatics and Computing (ICIC), Denpasar: IEEE, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/10006986

J. Abdollahi, B. Nouri-Moghaddam, and M. Ghazanfari, “Deep Neural Network Based Ensemble learning Algorithms for the healthcare system (diagnosis of chronic diseases),” 2021. doi: https://doi.org/10.48550/arXiv.2103.08182.

V. I. Yani, A. Aradea, and H. Mubarok, “Optimasi Prakiraan Cuaca Menggunakan Metode Ensemble pada Naïve Bayes dan C4.5,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 3, pp. 607–619, 2022, doi: 10.28932/jutisi.v8i3.5455.

S. Mutmainnah, G. Abdurrahman, H. Azizah, and A. Faruq, “C4.5 Algorithm Optimization Using Bagging Techniques On Gold Karat Level Data,” 2020. Accessed: Nov. 29, 2022. [Online]. Available: http://repository.unmuhjember.ac.id/4416/

R. Singh, “Machine Learning Algorithms and Ensemble Technique to Improve Prediction of Students Performance,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 3, pp. 3970–3976, Jun. 2020, doi: 10.30534/ijatcse/2020/221932020.

L. M. Cendani and A. Wibowo, “Perbandingan Metode Ensemble Learning pada Klasifikasi Penyakit Diabetes,” J. Masy. Inform., vol. 13, no. 1, pp. 33–44, 2022, doi: 10.14710/jmasif.13.1.42912.

S. B. Xu, S. Y. Huang, Z. G. Yuan, X. H. Deng, and K. Jiang, “Prediction of the Dst Index with Bagging Ensemble-learning Algorithm,” Astrophys. J. Suppl. Ser., vol. 248, no. 1, p. 14, May 2020, doi: 10.3847/1538-4365/ab880e.

I. Possebon, A. Silva, L. Granville, A. Schaeffer-Filho, and A. Marnerides, “Improved Network Traffic ClassificationUsing Ensemble Learning,” IEEE Symp. Comput. Commun., 2019.

D. Triana and S. Osowski, “Bagging and boosting techniques in prediction of particulate matters,” Bull. Polish Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 1207–1215, Oct. 2020, doi: 10.24425/bpasts.2020.134659.

A. Dželihodžić, D. Donko, and J. Kevrić, “Improved credit scoring model based on bagging neural network,” Int. J. Inf. Technol. Decis. Mak., vol. 17, no. 6, pp. 1725–1741, Nov. 2018, doi: 10.1142/S0219622018500293.

M. Smaida, “Bagging of Convolutional Neural Networks for Diagnostic of Eye Diseases,” 2020.

U. Michelucci and F. Venturini, “Estimating Neural Network’s Performance with Bootstrap: A Tutorial,” Mach. Learn. Knowl. Extr., vol. 3, no. 2, pp. 357–373, Mar. 2021, doi: 10.3390/make3020018.

R. Pramudita, S. Muis, N. Safitri, and F. Shafirawati, “Optimasi Algoritma Machine Learning Menggunakan Teknik Bagging Pada Klasifikasi Diagnosis Kanker Payudara,” Tematik, vol. 11, no. 1, pp. 128–134, 2024, doi: 10.38204/tematik.v11i1.1928.

Downloads

Published

2025-06-28

How to Cite

Pramudita, R. ., Safitri, N., & Nazah, V. Z. (2025). Studi Komparatif Algoritma Machine Learning dengan Teknik Bagging dan AdaBoost pada Klasifikasi Kanker Payudara. TEMATIK, 12(1), 101–108. https://doi.org/10.38204/tematik.v12i1.2435