Penerapan Convolutional Neural Network (CNN) untuk Klasifikasi Kualitas Beras sebagai Strategi Peningkatan Keamanan Pangan di Indonesia

Authors

  • Ade Bastian Universitas Majalengka https://orcid.org/0000-0001-7257-1185
  • Deni Priyadi Universitas Majalengka
  • Dadan Zaliluddin Universitas Majalengka
  • Ardi Mardiana Universitas Majalengka
  • Abrar Wahid Universitas Majalengka
  • Muhamamad Rifki Universitas Majalengka
  • Muhamamad Fahmi Aziz Universitas Majalengka

DOI:

https://doi.org/10.38204/tematik.v12i1.2332

Keywords:

Artificial Intelligence, Convolutional Neural Network, Conterfeit Detection, Food Safety, Rice Classification

Abstract

Food fraud has emerged as a significant global issue, threatening public health, economic stability, and consumer trust across the food supply chain. In the context of rice—a staple consumed by more than half of the world’s population—the proliferation of counterfeit products poses a critical risk. This study aims to develop a deep learning-based classification model using Convolutional Neural Networks (CNN) to accurately distinguish between medium-grade, premium, and counterfeit rice. The research involved the systematic collection of 100 grain images per rice category, followed by preprocessing, data augmentation, and model training using an optimized CNN architecture for image-based classification. The dataset was split into training, validation, and testing subsets with a 60:20:20 ratio. The model was trained over 12 epochs, achieving a training accuracy of 95%. Evaluation using the test set yielded identical accuracy, with the confusion matrix confirming perfect classification across categories. External validation further demonstrated the model’s robustness and generalizability. The findings highlight CNN’s potential as an effective tool for enhancing food safety monitoring systems and combating rice fraud. This AI-driven approach contributes to agricultural quality control and emphasizes the role of machine learning in promoting food security and authenticity assurance. However, CNN models face limitations, including susceptibility to overfitting when trained on insufficiently diverse data and high computational demands during training. These challenges underscore the need for diversified datasets and the exploration of alternative architectures offering comparable performance with greater computational efficiency.

Downloads

Download data is not yet available.

References

B. Popping et al., “Food inauthenticity: Authority activities, guidance for food operators, and mitigation tools,” Compr Rev Food Sci Food Saf, vol. 21, no. 6, pp. 4776–4811, Nov. 2022, doi: 10.1111/1541-4337.13053.

R. Kwasi Bannor, K. K. Arthur, D. Oppong, and H. Oppong-Kyeremeh, “A comprehensive systematic review and bibliometric analysis of Food Safety from a global perspective,” J Agric Food Res, vol. 14, Dec. 2023, doi: 10.1016/j.jafr.2023.100686.

Y. Liu, Y. Li, Y. Peng, Y. Yang, and Q. Wang, “Detection of fraud in high-quality rice by near-infrared spectroscopy,” J Food Sci, vol. 85, no. 9, pp. 2773–2782, Sep. 2020, doi: 10.1111/1750-3841.15314.

D. A. Willette, G. Navarrete-Forero, Z. Gold, A. M. D. Lizano, L. Gonzalez-Smith, and G. Sotil, “Characterizing Industrial and Artisanal Fishing Vessel Catch Composition Using Environmental DNA and Satellite-Based Tracking Data,” Foods, vol. 10, no. 6, p. 1425, Jun. 2021, doi: 10.3390/foods10061425.

J. B. Machibya, I. Kadigi, and J. Njeru, “The causes and detrimental effects associated with the use of ‘fake’ inputs and seeds to the smallholder farmers in Tanzania I,” Tanzania, 2021. [Online]. Available: https://www.researchgate.net/publication/354248198

A. Galal-Khallaf, A. Ardura, K. Mohammed-Geba, Y. J. Borrell, and E. Garcia-Vazquez, “DNA barcoding reveals a high level of mislabeling in Egyptian fish fillets,” Food Control, vol. 46, pp. 441–445, 2014, doi: 10.1016/j.foodcont.2014.06.016.

J. L. Garcia et al., “Fishy business in Seattle: Salmon mislabeling fraud in sushi restaurants vs grocery stores,” PLoS One, vol. 19, no. 11, p. e0311522, Nov. 2024, doi: 10.1371/journal.pone.0311522.

D. C. Carvalho, D. Guedes, M. da Gloria Trindade, R. M. S. Coelho, and P. H. de Lima Araujo, “Nationwide Brazilian governmental forensic programme reveals seafood mislabelling trends and rates using DNA barcoding,” Fish Res, vol. 191, pp. 30–35, Jul. 2017, doi: 10.1016/j.fishres.2017.02.021.

M. C. Calosso, J. A. B. Claydon, S. Mariani, and D. M. Cawthorn, “Global footprint of mislabelled seafood on a small island nation,” Biol Conserv, vol. 245, May 2020, doi: 10.1016/j.biocon.2020.108557.

Q. Han, S. W. Erasmus, C. T. Elliott, and S. M. van Ruth, “A sense of ginger fraud: prevalence and deconstruction of the China-European union supply chain,” NPJ Sci Food, vol. 6, no. 1, p. 51, Nov. 2022, doi: 10.1038/s41538-022-00166-y.

Z. M. Scales, E. Narbay, and R. S. Hellberg, “Use of DNA Barcoding Combined with PCR-SFLP to Authenticate Species in Bison Meat Products,” Foods, vol. 10, no. 2, p. 347, Feb. 2021, doi: 10.3390/foods10020347.

F. Cueni, D. B. Nelson, M. Boner, and A. Kahmen, “Using plant physiological stable oxygen isotope models to counter Food Safety,” Sci Rep, vol. 11, no. 1, p. 17314, Aug. 2021, doi: 10.1038/s41598-021-96722-9.

A. Giusti et al., “Building of an internal transcribed spacer (Its) gene dataset to support the italian health service in mushroom identification,” Foods, vol. 10, no. 6, 2021, doi: 10.3390/foods10061193.

C. McVey, U. Gordon, S. A. Haughey, and C. T. Elliott, “Assessment of the analytical performance of three near-infrared spectroscopy instruments (Benchtop, handheld and portable) through the investigation of coriander seed authenticity,” Foods, vol. 10, no. 5, 2021, doi: 10.3390/foods10050956.

X. Li, M. Zang, D. Li, K. Zhang, Z. Zhang, and S. Wang, “Meat Food Safety risk in Chinese markets 2012–2021,” NPJ Sci Food, vol. 7, no. 1, Dec. 2023, doi: 10.1038/s41538-023-00189-z.

S. K. Lo et al., Digital-Physical Parity for Food Safety Detection, vol. 11521 LNCS, no. June. Springer International Publishing, 2019. doi: 10.1007/978-3-030-23404-1_5.

L. C. Fengou, A. Lianou, P. Tsakanikas, F. Mohareb, and G. J. E. Nychas, “Detection of meat adulteration using spectroscopy-based sensors,” Foods, vol. 10, no. 4, 2021, doi: 10.3390/foods10040861.

N. A. Mohidem, N. Hashim, R. Shamsudin, and H. C. Man, “Rice for Food Security: Revisiting Its Production, Diversity, Rice Milling Process and Nutrient Content,” Jun. 01, 2022, MDPI. doi: 10.3390/agriculture12060741.

R. A. Dar et al., “Classification of Rice Grain Varieties using Deep Convolutional Neural Network Architectures,” 2022. [Online]. Available: https://ssrn.com/abstract=4129842

D. Le Nguyen Doan, Q. Cuong Nguyen, F. Marini, A. Biancolillo, and H. Chi Minh City, “Authentication of Rice (Oryza sativa L.) Using Near Infrared Spectroscopy Combined with Different Chemometric Classification Strategies,” Applied Sciences, vol. 11, no. 362, pp. 1–11, 2021, doi: 10.3390/app.

N. Rathnayake, A. Miyazaki, T. L. Dang, and Y. Hoshino, “Age Classification of Rice Seeds in Japan Using Gradient-Boosting and ANFIS Algorithms,” Sensors, vol. 23, no. 5, Mar. 2023, doi: 10.3390/s23052828.

USDA ARS Beltsville Human Nutrition Research Center; USDA ARS Adaptive Cropping Systems Laboratory. Rice: Importance for Global Nutrition. J Nutr Sci Vitaminol (Tokyo). 2019;65(Suppl):S2–S3. doi:10.3177/jnsv.65.S2. PMID: 31619630

M. Śliwińska-Bartel, D. T. Burns, and C. Elliott, “Rice fraud a global problem: A review of analytical tools to detect species, country of origin and adulterations,” Oct. 01, 2021, Elsevier Ltd. doi: 10.1016/j.tifs.2021.06.042.

S. Asimi et al., “Fingerprinting of Volatile Organic Compounds for the Geographical Discrimination of Rice Samples from Northeast China,” Foods, vol. 11, no. 12, Jun. 2022, doi: 10.3390/foods11121695.

H. Onyeaka et al., “Navigating Food Safety: A Survey of Nigerian Consumer Knowledge and Attitudes,” Foods, vol. 13, no. 20, Oct. 2024, doi: 10.3390/foods13203270.

Y. Jie, T. Shi, Z. Zhang, and Q. Yan, “Identification of key volatiles differentiating aromatic rice cultivars using an untargeted metabolomics approach,” Metabolites, vol. 11, no. 8, Aug. 2021, doi: 10.3390/metabo11080528.

G. Çınarer, N. Erbaş, and A. Öcal, “Rice Classification and Quality Detection Success with Artificial Intelligence Technologies,” Brazilian Archives of Biology and Technology, vol. 67, 2024, doi: 10.1590/1678-4324-2024220754.

N. Talpur, S. J. Abdulkadir, H. Alhussian, M. H. Hasan, N. Aziz, and A. Bamhdi, Deep Neuro-Fuzzy System application trends, challenges, and future perspectives: a systematic survey, vol. 56, no. 2. Springer Netherlands, 2023. doi: 10.1007/s10462-022-10188-3.

A. Choudhary et al., “Artificial intelligence and its applications in the food,” The Pharma Innovation Journal, no. 7, pp. 1351–1355, 2023, [Online]. Available: https://www.researchgate.net/publication/372829511

T. Daniya and S. Vigneshwari, “Rice Plant Leaf Disease Detection and Classification Using Optimization Enabled Deep Learning,” Journal of Environmental Informatics, vol. 42, no. 1, pp. 25–38, 2023, doi: 10.3808/jei.202300492.

Bastian A, Sujadi H, Febrianto G. Penerapan Algoritma K-Means Clustering Analysis Pada Penyakit Menular Manusia (Studi Kasus Kabupaten Majalengka). Jurnal Sistem Informasi. 2018 Apr;14(1):26–32. doi:10.21609/jsi.v14i1.566

C. Ituma, G. G. James, and F. U. Onu, “Design of Intelligent Neuro-Fuzzy Based Document Retreival System,” Int J Sci Eng Res, vol. 11, no. 2, pp. 1–7, Feb. 2020.

Y. He et al., “Rapid appearance quality of rice based on machine vision and convolutional neural network research on automatic detection system,” Front Plant Sci, vol. 14, 2023, doi: 10.3389/fpls.2023.1190591.

A. Aznan, C. Gonzalez Viejo, A. Pang, and S. Fuentes, “Rapid Detection of Fraudulent Rice Using Low-Cost Digital Sensing Devices and Machine Learning,” Sensors, vol. 22, no. 22, Nov. 2022, doi: 10.3390/s22228655.

Downloads

Published

2025-06-25

How to Cite

Ade Bastian, Priyadi, D., Zaliluddin, D., Mardiana, A., Wahid, A., Rifki, M., & Fahmi Aziz, M. (2025). Penerapan Convolutional Neural Network (CNN) untuk Klasifikasi Kualitas Beras sebagai Strategi Peningkatan Keamanan Pangan di Indonesia. TEMATIK, 12(1), 50–58. https://doi.org/10.38204/tematik.v12i1.2332