Identifikasi Opini Publik Terhadap Kendaraan Listrik dari Data Komentar YouTube: Pemodelan Topik Menggunakan BERTopic
Abstract
The Indonesian government is encouraging the transition to electric vehicles to reduce the use of fossil fuels and the negative environmental impact. This transition sparked controversy because Indonesia is still heavily dependent on coal-fired power plants, and many argue that the transition is not ready without adequate renewable energy and supporting infrastructure. Public opinion analysis is crucial in considering the introduction of electric vehicles in Indonesia due to the controversial nature of the transition. The opinion is transmitted through YouTube by taking comment data, then grouped into a topic to identify public opinion. The topic modeling method used is a BERTopic transformer model using IndoBERTweet in embedding. Once public opinion is modeled into a topic, changes in public opinion are evaluated using coherence score metrics and topic diversity as a measure of the consistency and diversity of the topic. The resulting topics have a coherence value of around 0.6 to 1 and a diversity value of 0.95838. This indicates that the resulting themes have strong semantic similarities and high diversity in terms of word usage and capture various aspects of text documents well.
Downloads
References
ESDM, “Transisi Energi Bersih Melalui Kendaraan Bermotor Listrik,” ESDM, 2020. https://www.esdm.go.id/id/berita-unit/direktorat-jenderal-ketenagalistrikan/transisi-energi-bersih-melalui-kendaraan-bermotor-listrik (accessed July. 17, 2024).
V. Pirmana, A. S. Alisjahbana, A. A. Yusuf, R. Hoekstra, and A. Tukker, “Economic and environmental impact of electric vehicles production in Indonesia,” Clean Technologies and Environmental Policy, vol. 25, Feb. 2023, doi: https://doi.org/10.1007/s10098-023-02475-6.
M Askinatin, N Heldini, Y Supriyanto, None Saparudin, and N Ariyanto, “Analysis of market readiness for the safe use of electric vehicles in Indonesia post-pandemic era,” IOP Conference Series Earth and Environmental Science, vol. 1267, no. 1, pp. 012042–012042, Dec. 2023, doi: https://doi.org/10.1088/1755-1315/1267/1/012042.
Mardhi, Lu, “Pandangan Generasi Terkini Mengenai Kendaraan Listrik di Indonesia”, Whiteboardjournal, 2023. (accessed by July. 17, 2024).
Candra dan C, “Evaluasi hambatan untuk adopsi kendaraan listrik di Indonesia melalui pendekatan prioritas ordinal abu-abu”, International Journal of Grey Systems, 2(1), 38-56, 2022
B. Ogunleye, T. Maswera, L. Hirsch, J. Gaudoin, and T. Brunsdon, “Comparison of Topic Modelling Approaches in the Banking Context,” Applied Sciences, vol. 13, no. 2, p. 797, Jan. 2023, doi: https://doi.org/10.3390/app13020797.
Simanjuntak, K. A., Koyimatu, M., & Ervanisari, Y. P, “Analisis Perubahan Opini Publik Terhadap Kendaraan Listrik di Indonesia Melalui Komentar YouTube: Pendekatan Topic Modeling BERTopic”, Jurnal Inovasi Kewirausahaan, 1(3), 1-9, 2024, https://doi.org/10.37817/jurnalinovasikewirausahaan.v1i3
Groot, M. Aliannejadi, and M. R. Haas, “Experiments on Generalizability of BERTopic on Multi-Domain Short Text,” arXiv (Cornell University), Jan. 2022, doi: https://doi.org/10.48550/arxiv.2212.08459.
Z. Jiang, B. Gao, Y. He, Y. Han, P. Doyle, and Q. Zhu, “Text Classification Using Novel Term Weighting Scheme-Based Improved TF-IDF for Internet Media Reports,” Mathematical Problems in Engineering, vol. 2021, pp. 1–30, Mar. 2021, doi: https://doi.org/10.1155/2021/6619088.
H. P. Suresha and K. Kumar Tiwari, “Topic Modeling and Sentiment Analysis of Electric Vehicles of Twitter Data,” Asian Journal of Research in Computer Science, pp. 13–29, Oct. 2021, doi: https://doi.org/10.9734/ajrcos/2021/v12i230278.
A. Uteuov, “Topic model for online communities’ interests prediction,” Procedia Computer Science, vol. 156, pp. 204–213, 2019, doi: https://doi.org/10.1016/j.procs.2019.08.196.
F. Koto, J. H. Lau, and T. Baldwin, “IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effective Domain-Specific Vocabulary Initialization,” Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021, doi: https://doi.org/10.18653/v1/2021.emnlp-main.833.
L. McInnes, J. Healy, N. Saul, and L. Großberger, “UMAP: Uniform Manifold Approximation and Projection,” Journal of Open Source Software, vol. 3, no. 29, p. 861, Sep. 2018, doi: https://doi.org/10.21105/joss.00861.
K. Kukushkin, Y. Ryabov, and A. Borovkov, “Digital Twins: A Systematic Literature Review Based on Data Analysis and Topic Modeling,” Data, vol. 7, no. 12, p. 173, Nov. 2022, doi: https://doi.org/10.3390/data7120173.
Y. Yang et al., “Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data,” Cell Reports, vol. 36, no. 4, p. 109442, Jul. 2021, doi: https://doi.org/10.1016/j.celrep.2021.109442.
F. Nie, Z. Li, R. Wang, and X. Li, “An Effective and Efficient Algorithm for K-Means Clustering With New Formulation,” vol. 35, no. 4, pp. 3433–3443, Jan. 2022, doi: https://doi.org/10.1109/tkde.2022.3155450.