Model Prediksi Kepadatan Pariwisata Jawa Barat Menggunakan Metode Long Short-Term Memory with Temporal Attention
Abstract
This study aims to apply the Long Short-Term Memory Networks (LSTM) with Temporal Attention method in predicting tourism density in West Java tourist destinations. The problem faced is the uncertainty in estimating tourist density at various locations and times, which makes the management of tourism resources and facilities difficult. Therefore, this study is important to provide a tool that can help make more effective decisions in the tourism sector in West Java. The urgency of this study lies in the need for accurate and real-time tourist density predictions to support the management and development of tourist destinations in West Java. With the right prediction model, related parties can regulate capacity, optimize services, and avoid negative impacts such as excess capacity and crowds that have the potential to endanger visitors and the environment. The purpose of this study is to develop a tourism density prediction model that combines the distinctive features of LSTM with a temporal attention mechanism. This model aims to provide accurate and dynamic tourist density estimates, taking into account the temporal patterns of tourist visits in West Java. The model evaluation methods used in this study are RMSE and MAE, and the results of the model testing are that it has an RMSE value of 32208867.139 and an MAE value of 5099.219, and it is hoped that there will be a dataset with a long period after the covid mass where the dataset is free from abnormal events so that a more appropriate model is obtained.
Downloads
References
M. F. F. Mardianto, “Prediksi Kedatangan Wisatawan Mancanegara yang Dikaitkan dengan Potensi Wisata Halal di Indonesia,” Unair News, Surabaya, Nov. 2019. [Online]. Available: https://unair.ac.id/prediksi-kedatangan-wisatawan-mancanegara-yang-dikaitkan-dengan-potensi-wisata-halal-di-indonesia/
Tim BPS Jabar, “Jumlah Kunjungan Wisatawan Ke Objek Wisata (Orang), 2021-2023,” Badan Pusat Statistik, 2023. Jumlah Kunjungan Wisatawan Ke Objek Wisata (Orang), 2021-2023 (accessed Mar. 27, 2024).
I. K. Suwena and I. G. N. Widyatmaja, Pengetahuan Dasar Ilmu Pariwisata. Pustaka Larasan, 2017.
F. Saladan, A. Michael, and F. B. Gallaran, “Prediksi Jumlah Kunjungan Wisatawan Di Toraja Utara Menggunakan Metode Long Short Term Memory,” vol. 3, no. 1, pp. 11–20, 2023, doi: 10.47178/infinity.v3i1.2189.
J.D.Hamilton, Time series analysis. Princeton university press, 2020.
B. Lim and S. Zohren, “Time-series forecasting with deep learning: A survey,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 379, no. 2194, 2021, doi: 10.1098/rsta.2020.0209.
H. Liu, “Intelligent Tourism Information Service Model considering Tourist Experience in the Environment of Internet of Things,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/5252218.
F. Fahira and C. Prianto, “Prediksi Pola Kedatangan Turis Mancanegara dan Menganalisis Ulasan Tripadvisor dengan LSTM dan LDA,” J. Tekno Insentif, vol. 17, no. 2, pp. 69–83, 2023, doi: 10.36787/jti.v17i2.1096.
H. Mukhtar, Y. Rizki, F. A. Wenando, and M. Abdul Al Aziz, “Prediksi Kunjungan Wisatawan Ke Indonesia Dengan Reduksi Noise Pada Mesin Pencari Menggunakan Metode Hilbert Huang Transform,” J. Fasilkom, vol. 12, no. 3, pp. 152–159, 2022, doi: 10.37859/jf.v12i3.4332.
D. R. Roosaputri and C. Dewi, “Perbandingan Algoritma ARIMA, Prophet, dan LSTM dalam Prediksi Penjualan Tiket Wisata Taman Hiburan (Studi Kasus : Saloka Theme Park),” J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 4, no. 3, pp. 507–517, 2023.
L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory pada Data Time Series untuk Memprediksi Penjualan Produk PT. Metiska Farma,” J. Nas. Pendidik. Tek. Inform., vol. 8, no. 3, pp. 184–196, 2019.
M. Musfiroh, D. C. R. Novitasari, P. K. Intan, and G. G. Wisnawa, “Penerapan Metode Principal Component Analysis (PCA) dan Long Short-Term Memory (LSTM) dalam Memprediksi Prediksi Curah Hujan Harian,” Build. Informatics, Technol. Sci., vol. 5, no. 1, pp. 1–11, 2023, doi: 10.47065/bits.v5i1.3114.
C. Rusmana, Kusrini, and Kusnawi, “Penggunaan Variabel Event dan Libur Sekolah Dalam Memprediksi Wisatawan Dengan Metode LSTM,” J. Fasilkom, vol. 13, no. 02, pp. 88–95, 2023, doi: 10.37859/jf.v13i02.4974.
L. Iben Nasr, A. Masmoudi, and L. Hadrich Belguith, “Natural Tunisian Speech Preprocessing for Features Extraction,” in 2023 IEEE/ACIS 23rd International Conference on Computer and Information Science (ICIS), 2023, pp. 73–78. doi: 10.1109/ICIS57766.2023.10210270.
N. Selle, N. Yudistira, and C. Dewi, “Perbandingan Prediksi Penggunaan Listrik dengan Menggunakan Metode Long Short Term Memory (LSTM) dan Recurrent Neural Network (RNN),” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 1, pp. 155–162, 2022, doi: 10.25126/jtiik.2022915585.
S. S. Nurashila, F. Hamami, and T. F. Kusumasari, “Perbandingan Kinerja Algoritma Recurrent Neural Network (Rnn) Dan Long Short-Term Memory (Lstm): Studi Kasus Prediksi Kemacetan Lalu Lintas Jaringan Pt Xyz,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 3, pp. 864–877, 2023, doi: 10.29100/jipi.v8i3.3961.
M. A. Ridla, N. Azise, and M. Rahman, “Perbandingan Model Time Series Forecasting Dalam Memprediksi Jumlah Kedatangan Wisatawan Dan Penumpang Airport,” Simkom, vol. 8, no. 1, pp. 1–14, 2023, doi: 10.51717/simkom.v8i1.103.
M. L. Pratama and H. Utama, “Pendekatan Deep Learning Menggunakan Metode Lstm Untuk Prediksi Harga Bitcoin,” Indones. J. Comput. Sci. Res., vol. 2, no. 2, pp. 43–50, 2023, doi: 10.59095/ijcsr.v2i2.77.
T. A. Faisal Muhammad and M. I. Irawan, “Implementasi Long Short-Term Memory (LSTM) untuk Prediksi Intensitas Curah Hujan (Studi Kasus: Kabupaten Malang),” J. Sains dan Seni ITS, vol. 12, no. 1, 2023, doi: 10.12962/j23373520.v12i1.106892.
M. Marwondo and T. Hidayah, “Perbandingan Algoritma Long Short-Term Memory (LSTM) dan Gated Recurrent Unit (GRU) Untuk Prediksi Harga Emas Dunia,” In Search, vol. 21, no. 2, pp. 230–239, 2023, doi: 10.37278/insearch.v21i2.600.