Kombinasi Metode SVM Dengan Optimasi SMOTE Terhadap Ulasan Pengguna Layanan Streaming

  • Ni Putu Anik Juniantini Institut Bisnis dan Teknologi Indonesia
  • Christina Purnama Yanti Institut Bisnis dan Teknologi Indonesia
  • Ni Ketut Utami Nilawati Institut Bisnis dan Teknologi Indonesia
Keywords: Disney Hotstar, sentiment, SVM, SMOTE, user reviews

Abstract

The development of digital technology has changed media consumption patterns in Indonesia, with streaming services like Disney+ Hotstar becoming increasingly popular. Since its launch in 2020, Disney+ Hotstar has offered exclusive content from Marvel, Pixar, Disney, National Geographic and others, quickly capturing the market in Indonesia. However, this service is not without controversy, particularly regarding certain content deemed to conflict with social values in Indonesia. Additionally, service quality, subscription prices, and content availability are also concerns for users. The difference in ratings on the Play Store (1.7) and the App Store (4.8) indicates a disparity in user satisfaction between the two platforms. This study aims to analyze user sentiment towards Disney+ Hotstar, particularly regarding reviews on the Play Store and App Store. Using a classification model with Support Vector Machine (SVM), optimized with the Synthetic Minority Over-Sampling Technique (SMOTE) to address data imbalance. Based on the analysis of 1,650 datasets, user sentiment tends to be neutral, as measured using the Vader Lexicon. The method testing results show that SMOTE optimization can improve the performance of the SVM model, with an accuracy increase of +0.7 on Play Store reviews from 0.67 to 0.74, and an accuracy increase of +0.11 on App Store reviews from 0.72 to 0.83 In conclusion, the SVM method optimized with SMOTE has proven effective in improving the accuracy of sentiment classification in user reviews of Disney+ Hotstar.

Downloads

Download data is not yet available.

References

M. Y. Siregar et al., “Analisis Sentimen Pada Ulasan Pengguna Aplikasi Streaming Vidio Menggunakan Metode Naïve Bayes,” vol. 4, no. 5, pp. 2419–2429, 2024, doi: 10.30865/klik.v4i5.1787.

A. Y. Permatasari, “BAB II Tinjauan Pustaka BAB II TINJAUAN PUSTAKA 2.1. 1–64,” Gastron. ecuatoriana y Tur. local., vol. 1, no. 69, pp. 5–24, 2023.

A. U. Chasanah, “Tinjauan Hukum Islam Mengenai Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 14 Tahun 2019 BAB II Bagian Kedua Tentang Kriteria Penyensoran Film,” no. 18913053, pp. 1–66, 2020.

A. Faadilah, “Analisis Sentimen Pada Ulasan Aplikasi Tokopedia di Google Play Store Menggunakan Metode Long Short Term Memory,” pp. 1–46, 2020.

S. Rahayu, Y. MZ, J. E. Bororing, and R. Hadiyat, “Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP,” Edumatic J. Pendidik. Inform., vol. 6, no. 1, pp. 98–106, 2022, doi: 10.29408/edumatic.v6i1.5433.

A. Sanjaya et al., “PENERAPAN ALGORITMA NAÏVE BAYES CLASSIFIER MENGENAI SENTIMEN TERHADAP APLIKASI STREAMING FILM ONLINE NETFLIX,” pp. 1038–1044, 2024.

J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1120–1126, 2021, doi: 10.29207/resti.v5i6.3588.

R. N. Ikhsani and F. F. Abdulloh, “Optimasi SVM dan Decision Tree Menggunakan SMOTE Untuk Mengklasifikasi Sentimen Masyarakat Mengenai Pinjaman Online,” J. Media Inform. Budidarma, vol. 7, pp. 1667–1677, 2023, doi: 10.30865/mib.v7i4.6809.

M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Comparison of Naïve Bayes and Support Vector Machine Methods in Twitter Sentiment Analysis,” Smatika J., vol. 10, no. 02, pp. 71–76, 2020.

S. Ernawati and R. Wati, “Evaluasi Performa Kernel SVM dalam Analisis Sentimen Review Aplikasi ChatGPT Menggunakan Hyperparameter dan VADER Lexicon,” vol. 15, no. April, pp. 40–49, 2024.

C. H. Yutika and S. Al Faraby, “Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes,” vol. 5, no. April, pp. 422–430, 2021, doi: 10.30865/mib.v5i2.2845.

R. Wati, S. Ernawati, and H. Rachmi, “Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH,” J. Manaj. Inform., vol. 13, no. 1, pp. 84–93, 2023, doi: 10.34010/jamika.v13i1.9424.

Styawati, Andi Nurkholis, Zaenal Abidin, and Heni Sulistiani, “Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, pp. 904–910, 2021, doi: 10.29207/resti.v5i5.3380.

H. C. Husada and A. S. Paramita, “Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Teknika, vol. 10, no. 1, pp. 18–26, 2021, doi: 10.34148/teknika.v10i1.311.

Q. N. A. Andreyestha, “Analisa Sentimen Kicauan Twitter Tokopedia Dengan Optimalisasi Data Tidak Seimbang Menggunakan Algoritma SMOTE,” Infotek J. Inform. dan Teknol., vol. 5, no. 1, pp. 108–116, 2022, doi: 10.29408/jit.v5i1.4581.

K. Pramayasa, I. M. D. Maysanjaya, and I. G. A. A. D. Indradewi, “Analisis Sentimen Program Mbkm Pada Media Sosial Twitter Menggunakan KNN Dan SMOTE,” SINTECH (Science Inf. Technol. J., vol. 6, no. 2, pp. 89–98, 2023, doi: 10.31598/sintechjournal.v6i2.1372.

S. Proboningrum and Acihmah Sidauruk, “Sistem Pendukung Keputusan Pemilihan Supplier Kain Dengan Metode Moora,” JSiI (Jurnal Sist. Informasi), vol. 8, no. 1, pp. 43–48, 2021, doi: 10.30656/jsii.v8i1.3073.

Published
2024-12-09
How to Cite
Ni Putu Anik Juniantini, Yanti, C. P., & Nilawati, N. K. U. (2024). Kombinasi Metode SVM Dengan Optimasi SMOTE Terhadap Ulasan Pengguna Layanan Streaming . TEMATIK, 11(2), 155 - 163. https://doi.org/10.38204/tematik.v11i2.2068