Analisis Sentimen Twitter Terpilihnya Prabowo - Gibran Menggunakan Metode Neural Network
Abstract
One of the most important elections in Indonesian democracy is the presidential election, which chooses the country's leader for the next five years. In the 2024 presidential election, there are three candidates for president and vice president, including the Prabowo Subianto - Gibran Rakabuming Raka pair. The election process has taken centre stage on social media, particularly Twitter, where people interact, share information, and express their opinions and feelings. This study aims to look at public opinion towards the Prabowo-Gibran team, which has attracted a lot of attention since Gibran was nominated as a vice presidential candidate until he was declared the winner in the 2024 presidential election by the KPU. This analysis provides valuable insight into understanding public opinion and feelings towards the president and vice president-elect. The method used in this research is neural network (NN), which is proven to be effective in text data classification and capable of producing high accuracy. The dataset used is public opinion on Twitter, which is taken through the data crawling process. The initial data of 1511 tweets was then cleaned and prepared into a dataset of 1500 tweets, with the main attribute being the content of the tweet. Based on the findings, the neural network model created was able to classify the sentiment of tweets related to the Prabowo-Gibran pair with an accuracy rate of 93%. Thus, this sentiment analysis makes an important contribution to understanding the public's response to the presidential election process and the election of a new president and vice president
Downloads
References
D. K. Nugroho, “US presidential election 2020 prediction based on Twitter data using lexicon-based sentiment analysis,” in 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), IEEE, 2021, pp. 136–141.
M. Yaya Sawitri and I. Nyoman Wiratmaja, “On the Brink of Post-Democracy: Indonesia’s Identity Politics in the Post-Truth Era,” Politička misao: časopis za politologiju, vol. 58, no. 2, pp. 141–159, 2021.
P. R. Revolusi, “PERSEPSI PUBLIK DAN MEDIA SOSIAL DALAM KAMPANYE DIGITAL PILPRES 2024,” NIVEDANA: Jurnal Komunikasi dan Bahasa, vol. 5, no. 1, pp. 32–44, 2024.
M. Al-Fikri, F. Ismail, S. Nurjanah, and R. Rosyad, “Politik Dinasti dalam Perspektif Komunikasi Politik,” Buana Komunikasi (Jurnal Penelitian dan Studi Ilmu Komunikasi), vol. 4, no. 2, pp. 156–162, 2023.
R. Safitri, N. Alfira, D. Tamitiadini, W. W. A. Dewi, and N. Febriani, Analisis sentimen: Metode alternatif penelitian big data. Universitas Brawijaya Press, 2021.
M. Syarifuddinn, “Analisis Sentimen Opini Publik Mengenai Covid-19 Pada Twitter Menggunakan Metode Naïve Bayes Dan Knn,” Inti Nusa Mandiri, vol. 15, no. 1, pp. 23–28, 2020.
M. Minardi, R. Lasepa, S. Riyadi, S. Ramadhan, and D. D. Saputra, “Sentiment Analysis Terhadap Perspektif Warganet Atas Tragedi Kanjuruhan Malang di Twitter Menggunakan Naïve Bayes Classifier,” Jurnal Informatika, vol. 10, no. 1, pp. 45–53, 2023.
A. R. Isnain, A. I. Sakti, D. Alita, and N. S. Marga, “Sentimen Analisis Publik Terhadap Kebijakan Lockdown Pemerintah Jakarta Menggunakan Algoritma Svm,” Jurnal Data Mining Dan Sistem Informasi, vol. 2, no. 1, pp. 31–37, 2021.
G. K. Locarso, “Analisis Sentimen Review Aplikasi Pedulilindungi Pada Google Play Store Menggunakan NBC,” JTIK (Jurnal Teknik Informatika Kaputama), vol. 6, no. 2, pp. 353–361, 2022.
A. A. Kurniawan and M. Mustikasari, “Implementasi deep learning menggunakan metode CNN dan lSTM untuk menentukan berita palsu dalam bahasa indonesia,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 4, pp. 544–552, 2021.
D. Abimanyu, “Analisis Sentimen Akun Twitter Apex Legends Menggunakan VADER,” Analisis Sentimen Akun Twitter Apex Legends Menggunakan VADER, vol. 5, no. 03, pp. 423–431, 2022.
P. L. Parameswari and P. Prihandoko, “PENGGUNAAN CONVOLUTIONAL NEURAL NETWORK UNTUK ANALISIS SENTIMEN OPINI LINGKUNGAN HIDUP KOTA DEPOK DI TWITTER,” Jurnal Ilmiah Teknologi dan Rekayasa, vol. 27, no. 1, pp. 29–42, 2022.
B. B. Baskoro, I. Susanto, and S. Khomsah, “Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunakan Metode Random Forest dan TF-IDF (Studi Kasus: Ulasan Pelanggan Pada Situs TRIPADVISOR),” Journal of Informatics Information System Software Engineering and Applications (INISTA), vol. 3, no. 2, pp. 21–29, 2021.
D. Musfiroh, U. Khaira, P. E. P. Utomo, and T. Suratno, “Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon: Sentiment Analysis of Online Lectures in Indonesia from Twitter Dataset Using InSet Lexicon,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 1, no. 1, pp. 24–33, 2021.
M. Furqan, S. Sriani, and S. M. Sari, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia,” Techno. Com, vol. 21, no. 1, pp. 51–60, 2022.
C. F. Hasri and D. Alita, “Penerapan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” Jurnal informatika dan rekayasa perangkat lunak, vol. 3, no. 2, pp. 145–160, 2022.
T. Widiastuti, K. Karsa, and C. Juliane, “Evaluasi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademik Menggunakan Metode Klasifikasi Algoritma C4. 5,” Technomedia Journal, vol. 7, no. 3 Februari, pp. 364–380, 2023.
S. F. Aliyah, H. Yasin, S. Suparti, B. Warsito, and T. Widiharis, “Analisis sentimen PT Tiki Jalur Nugraha Ekakurir (PT Tiki JNE) pada media sosial twitter menggunakan model feed forward neural network,” J. Statistika Unimus, vol. 11, no. 2, 2020.
F. Y. Santoso, E. Sediyono, and H. D. Purnomo, “Optimalisasi Hyper Parameter Convolutional Neural Networks Menggunakan Ant Colony Optimization,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 2, pp. 243–248, 2024.
M. I. Firmansyah, R. S. Rohman, and E. Marsusanti, “Penerapan Algoritma Klastering K-Means Untuk Fitur Atribut Pada Layanan Streaming Musik Spotify,” Indonesian Journal Computer Science, vol. 2, no. 2, pp. 58–66, 2023.