Peningkatan kinerja arsitektur ResNet50 untuk Menangani Masalah Overfitting dalam Klasifikasi Penyakit Kulit

  • Handoko Adji Pangestu Universitas AMIKOM Yogyakarta
  • Kusrini Universitas AMIKOM Yogyakarta
Keywords: skin diseases, deep learning, transfer learning, resnet50, classification

Abstract

Skin diseases are a significant global health issue, affecting millions of people worldwide. Deep learning, particularly with the transfer learning approach, has shown great potential in improving the diagnosis of skin diseases. This study aims to evaluate various techniques in the context of skin disease classification using transfer learning, focusing on the utilization of the ResNet50 architecture. The steps include data preprocessing, model design with variations in dense layers, fine-tuning, and dropout, as well as model performance evaluation. The results indicate that adding dense layers and fine-tuning significantly improve classification accuracy. Models without additional dense layers achieved an accuracy of around 90%, while fine-tuned models achieved an accuracy of about 94%, and models with added dense layers and fine-tuning achieved an accuracy of about 92%. Overall, adding dense layers and fine-tuning are effective strategies for enhancing the performance of skin disease classification models.

Downloads

Download data is not yet available.

References

F. Shoviantari and L. Agustina, "PENYULUHAN PENCEGAHAN KANKER KULIT DENGAN, PENYULUHAN PENCEGAHAN KANKER KULIT," Journal of Community Engagement and Employment, p. 41, 2021.

N. Alyyu, R. Y. N. Fuadah and N. K. C. Pratiwi, "Klasifikasi Kanker Kulit Ganas Dan Jinak Menggunakan Metode Convolutional Neural Network," e-Proceeding of Engineering, p. 3200, 2022.

C. Pelc, "Skin diseases such as eczema can cause sleep disturbances, study finds," 6 12 2023. [Online]. Available: https://www.medicalnewstoday.com/articles/skin-diseases-such-as-eczema-can-cause-sleep-disturbances-study-finds.

N. S. Rahayu, A. D. Puteri and L. M. A. Isnaeni, "HUBUNGAN PERILAKU MASYARAKAT DAN PENGGUNAAN AIR SUNGAI DENGAN GANGGUAN PENYAKIT KULIT DI DESA KAMPUNG PINANG WILAYAH KERJA PUSKESMAS PANTAI RAJA," Jurnal Imliah Ilmu Kesehatan, p. 435, 2023.

e. a. Mutakin, Implementasi Artificial Intelligence (AI) dalam Kehidupan, Daerah Khusus Ibukota Jakarta: Yayasan Kita Menulis, 2023.

W. Setiawan, Deep Learning menggunakan Convolutional Neural Network, Malang: Media Nusa Creative (MNC Publishing), 2021.

Tinaliah and T. Elizabeth, "Klasifikasi Lesi Benign Dan Malignant Pada Rongga Mulut Menggunakan Arsitektur ResNet50," Jurnal Teknik Informatika dan Sistem Informasi, pp. 630-637, 2023.

I. Gusmanda, J. Raharjo and E. Suhartono, "Deteksi Penyakit Pneumonia Berbasis Citra XRay Menggunakan Cnn Arsitektur Vgg-19," e-Proceeding of Engineering, p. 5178, 2023.

Verdy and E. Hartati, "KLASIFIKASI PENYAKIT MATA MENGGUNAKAN CONVOLUTIONALNEURAL NETWORK MODEL RESNET-50," Jurnal Rekayasa Sistem Informasi dan Teknologi, pp. 199-206, 2024.

D. Marcella, Yohannes and S. Devella , "Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network Dengan Arsitektur VGG-19," Jurnal Algoritme, pp. 60-70, 2022.

D. M. R. Sari, S. Nurmaini, D. P. Rini and A. I. Sapitri, "Dermatitis Atopic and Psoriasis Skin Disease Classification by using Convolutional Neural Network," Computer Engineering and Applications, pp. 1-10, 2023.

V. R. Allugunti, "A machine learning model for skin disease classification using convolution neural network," International Journal of Computing, Programming and Database Management, pp. 141-147, 2021.

I. R. Agustin and M. B. N. Putra, "Prediction of Skin Diseases using Convolutional Neural Networks as an Effort to Prevent Their Spread in Islamic Boarding School Environments," Khazanah Journal of Religion and Technology, pp. 49-53, 2023.

T. Debebe and B. Molla, "Human Skin Fungal Diseases Classification Using Deep Learning Technique," Harla Journal of Engineering and Technology, pp. 16-37, 2022.

J. E. Widyaya and S. Budi, "Pengaruh PreprocessingTerhadap Klasifikasi Diabetic Retinopathydengan Pendekatan Transfer Learning Convolutional Neural Network," Jurnal Teknik Informatika dan Sistem Informasi, pp. 110-124, 2021.

Yahya, Data Mining, Sukabumi: CV Jejak, anggota IKAPI, 2022.

S. V. Natasya and R. M. Awangga , Membuat analisis komparatif arima & prophet pada peramalan penjualan, Bandung: Informatics Research Center, 2023.

Q. A. Fitroh and S. Uyun, "Deep Transfer Learning untuk Meningkatkan Akurasi Klasifikasi pada Citra Dermoskopi Kanker Kulit," JURNAL NASIONAL TEKNIK ELEKTRO DAN TEKNOLOGI INFORMASI, pp. 79-83, 2023.

Kahlil, M. R. Munggaran, Laksono, Kurnianggoro, A. Mahendra, N. Zarima, F. Noviantika and A. Febriana, Computer Vision Berbasis Deep Learning Untuk Aplikasi Pertanian: Teori dan Praktik, Aceh: Syiah Kuala University Press, 2023.

Published
2024-06-25
How to Cite
Handoko Adji Pangestu, & Kusrini. (2024). Peningkatan kinerja arsitektur ResNet50 untuk Menangani Masalah Overfitting dalam Klasifikasi Penyakit Kulit. TEMATIK, 11(1), 65 - 71. https://doi.org/10.38204/tematik.v11i1.1876