Prototipe Sistem Deteksi dan Monitoring Penurunan Muka Tanah Pada Lahan Pertanian Gambut Berbasis IoT
Abstract
Agriculture on peatlands has great potential to meet food and economic needs but also requires attention to sustainable management. Agriculture on peatlands faces several serious challenges. Peatlands tend to be fragile, with risks of subsidence, fire, and degradation. To overcome the problem of land subsidence in peatland agriculture, action, integration from various parties, and proper monitoring are needed. IoT systems integrated with soil level monitoring can help minimize peatland destruction and improve agricultural sustainability. From the problem of land subsidence in peat farmland, a solution to monitor land subsidence is proposed as a prototype system to detect and monitor land subsidence on peat agricultural land. This system uses an integrated sensor system designed on Arduino and integrated with the web to facilitate the monitoring process. The prototype is designed according to the characteristics of peat farmland. The results obtained from this prototype can vary depending on the complexity of the system and the data collected, from the results of trials and simulations carried out by this system prototype can be an alternative in increasing the productivity and sustainability of peatland while reducing the risk of environmental damage. In the long term, these results can also have a positive impact on agricultural sustainability and peatland sustainability.
Downloads
References
B. D. Yuwono, H. Z. Abidin, and M. Hilmi, “Analisa geospasial penyebab penurunan muka tanah di Kota Semarang,” Pros. SNST ke-4 Tahun 2013, no. January 2013, pp. 1–12, 2013.
L. Ferdiyanto and N. Gofar, “Analisis Penurunan Tanah Berdasarkan Data Settlement Plate Dengan Metode Asaoka,” in Bina Darma Conference on Engineering Science http://conference.binadarma.ac.id/index.php/BDCES, pp. 1060–1067.
A. D. Ahsan, G. Yanti, and S. W. Megasari, “Analisis Penurunan Tanah Menggunakan Metode Vacuum Consolidation Dengan Variasi Jarak Pemasangan Pvd,” Konstruksia, vol. 13, no. 1, pp. 54–68, 2021, [Online]. Available: https://jurnal.umj.ac.id/index.php/konstruksia/article/view/10072.
F. Arrizimi, “Pengaruh Infiltrasi Terhadap Penurunan Permukaan Tanah Pada Lahan Gambut Kawasan Konservasi Taman Wisata Alam (Twa) Baning Kabupaten Sintang,” J. Teknol. Lingkung. Lahan Basah, vol. 3, no. 1, pp. 1–10, 2015, doi: 10.26418/jtllb.v3i1.9080.
N. Masganti, Maftu’ah, E. Wakhid, “Degradasi Lahan Gambut,” J. Degrad. dan Remidiasi, vol. 2, no. 10, pp. 40–71, 2018.
S. A. Nugroho, “Studi Daya Dukung Pondasi Dangkal pada Tanah Gambut dengan Kombinasi Geotekstil dan Grid Bambu,” J. Tek. Sipil, vol. 18, no. 1, p. 31, 2011, doi: 10.5614/jts.2011.18.1.3.
Novrianti, “Karakteristik Dan Kadar Air ( Gravimetri ) Gambut Daerah Sebangau Kota Palangkaraya,” in Prosiding Seminar Nasional Teknik Tahun 2021, 2022, vol. 2021, no. Senastika.
M. A. S. Masganti, Khairil Anwar, “Potensi dan Pemanfaatan Lahan Gambut Dangkal untuk Pertanian (Potential and Utilization of Shallow Peatland for Agriculture),” J. Sumberd. Lahan, vol. 11, no. 1, pp. 43–52, 2017.
R. Fasla, “Pengelolaan lahan gambut untuk pertanian secara berkelanjutan,” in Quo Vadis Restorasi Gambut di Indonesia: Tantangan & peluang Menuju Ekosistem Gambut Berkelanjutan, 2022, pp. 1–23.
S. Nugrahany, “Potensi Pertanian Lahan Gambut Dangkal di Provinsi Riau,” in Quo Vadis Restorasi Gambut di Indonesia: Tantangan & peluang Menuju Ekosistem Gambut Berkelanjutan, 2019, pp. 56–60.
H. S. Lestari, “Pertanian Cerdas Sebagai Upaya Indonesia Mandiri Pangan,” AGRITA (AGri), vol. 2, no. 1, p. 55, 2020, doi: 10.35194/agri.v2i1.983.
Noviar and B. Wardhana, “Rencana Restorasi Ekosistem Gambut Provinsi Sumatera Selatan tahun 2018-2023,” Badan Restor. Gambut, pp. 1–172, 2019.
N. Putu, A. Dewi, I. N. Sujana, and M. A. Meitriana, “Evaluasi Program Sistem Pertanian Terintegrasi ( Simantri ),” J. Pendidik. Ekon. Undiksha, vol. 12, no. 1, pp. 107–116, 2020.
M. Galang, S. Wicaksono, E. Suryani, and R. A. Hendrawan, “Increasing productivity of rice plants based on IoT ( Internet Of Things ) to realize Smart Agriculture using System Thinking approach,” Procedia Comput. Sci., vol. 197, pp. 607–616, 2022, doi: 10.1016/j.procs.2021.12.179.
A. Maroli, V. S. Narwane, and B. B. Gardas, “Applications of IoT for achieving sustainability in agricultural sector : A comprehensive review,” J. Environ. Manage., vol. 298, no. August, p. 113488, 2021, doi: 10.1016/j.jenvman.2021.113488.
F. D. Mambang; Cipta, Subhan Panji;Marleny, “Internet of things : prototipe irigasi digital berbasis mikrokontroler,” JTIULM, vol. 4, no. 2, pp. 59–64, 2019.
Y. Huang, L. Wang, Y. Hou, W. Zhang, and Y. Zhang, “A prototype IOT based wireless sensor network for traffic information monitoring,” Int. J. Pavement Res. Technol., vol. 11, no. 2, pp. 146–152, 2018, doi: 10.1016/j.ijprt.2017.07.005.
I. Ezzahoui, “ScienceDirect ScienceDirect Hydroponic and Aquaponic Farming : Comparative Study Based on Hydroponic and Aquaponic Farming : Comparative Study Based on Internet of things IoT technologies . Internet of things IoT technologies .,” Procedia Comput. Sci., vol. 191, pp. 499–504, 2021, doi: 10.1016/j.procs.2021.07.064.
E. A. Abioye et al., “IoT-based monitoring and data-driven modelling of drip irrigation system for mustard leaf cultivation experiment,” Inf. Process. Agric., vol. 8, no. 2, pp. 270–283, 2021, doi: 10.1016/j.inpa.2020.05.004.
R. Akhter and S. A. Sofi, “Precision agriculture using IoT data analytics and machine learning,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2021, doi: 10.1016/j.jksuci.2021.05.013.