Perbandingan Model Klasifikasi C4.5, Naïve Bayes, Support Vector Machine dan K-nearest Neighbor untuk Memprediksi Kelayakan Masyarakat dalam Menerima Bantuan PBI APBD
Abstract
This research evaluates the eligibility of the community to receive APBD Contribution Assistance (PBI) using four classification algorithms: C4.5, Naïve Bayes, K-Nearest Neighbor, and Support Vector Machine (SVM). There is a problem of inaccurate distribution of assistance, which prompted the selection of these four methods with specific considerations, C4.5 (Decision Tree) is known for its clarity and interpretability, providing an easy-to-understand understanding of the factors that influence classification decisions, Naïve Bayes was selected for its efficiency and speed in training and testing, suitable for large datasets and can be updated quickly with new data, K-Nearest Neighbor (KNN) is used for decision making based on local patterns in the data, useful if the eligibility decision is local or related to the surrounding environment while Support Vector Machine (SVM): Selected for its ability to handle complex and non-linear datasets. The results show that SVM has the highest Weighted Mean Precision, reaching 91.67%, confirming its superiority as the best choice. These findings make a significant contribution to improving the accuracy of determining the eligibility of PBI APBD beneficiaries, supporting targeting accuracy, and ensuring the effectiveness of the assistance program for people in need.
Downloads
References
R. Ramadani and E. Revida, “Pemberdayaan Masyarakat Melalui Program Kelompok Usaha Bersama (KUBE) Untuk Menanggulangi Kemiskinan Di Kelurahan Bandar Utama Kota Tebing Tinggi”.
A. Yuditia, Y. Hidayat, and S. Achmad, “PELAKSANAAN JAMINAN KESEHATAN NASIONAL OLEH BPJS BERDASARKAN UNDANG-UNDANG NO.40 TAHUN 2004 TENTANG SISTEM JAMINAN SOSIAL NASIONAL,” J. Magister Ilmu Huk., vol. 6, no. 1, p. 43, Aug. 2021, doi: 10.36722/jmih.v6i1.796.
M. R. Iswardhana and A. M. S. Attamimi, “EFEKTIVITAS PENERAPAN KEBIJAKAN OTONOMI DAERAH DALAM PENURUNAN TINGKAT KEMISKINAN DI BANDUNG BARAT TAHUN 2019,” no. 2, 2023.
U. E. Muhamad Khandava Mulyadien, “Algoritma K-Means Untuk Pengelompokan Bantuan Langsung Tunai (BLT),” Jul. 2022, doi: 10.5281/ZENODO.6944517.
A. Yonathan, H. Sujaini, and E. E. Pratama, “Perbandingan Algoritma Klasifikasi dalam Pendeteksian Hoax pada Media Sosial,” vol. 01, no. 1, 2022.
L. S. Hasibuan, “ANALISIS PENGARUH IPM, INFLASI, PERTUMBUHAN EKONOMI TERHADAP PENGANGGURAN DAN KEMISKINAN DI INDONESIA,” vol. 8, 2023.
N. Alamsyah, Budiman, and Titan Parama, “Analysis of E-learning user Acceptance using the Technology Acceptance Model (TAM) and end-User Computing Satisfaction (EUCS),” Formosa J. Appl. Sci., vol. 2, no. 8, pp. 1873–1892, Aug. 2023, doi: 10.55927/fjas.v2i8.5405.
N. Alamsyah and R. A. Krisdiawan, “PEMBANGUNAN APLIKASI SEBAGAI MEDIA PEMBELAJARAN BANGUN RUANG TINGKAT SD/SMP DENGAN MENGGUNAKAN METODE MARKER AUGMENTED REALITY,” NUANSA Inform., vol. 15, no. 1, p. 23, Jan. 2021, doi: 10.25134/nuansa.v15i1.3847.
R. W. Abdullah, D. Hartanti, H. Permatasari, A. W. Septyanto, and Y. A. Bagaskara, “Penerapan Data Mining untuk Memprediksi Jumlah Produk Terlaris Menggunakan Algoritma Naive Bayes Studi Kasus (Toko Prapti),” J. Ilm. Inform. Glob., vol. 13, no. 1, Mar. 2022, doi: 10.36982/jiig.v13i1.2060.
N. Alamsyah and N. Safitri, “Sistem Pendeteksi Kebocoran Tabung Gas Elpiji (Lpg) Berbasis Nodemcu Dan Telegram,” vol. 17, 2023.
A. C. Khotimah and E. Utami, “COMPARISON NAÏVE BAYES CLASSIFIER, K-NEAREST NEIGHBOR AND SUPPORT VECTOR MACHINE IN THE CLASSIFICATION OF INDIVIDUAL ON TWITTER ACCOUNT”.
A. Simangunsong, “Penerapan Metode Monte Carlo Dalam Simulasi Pengelolaan Persediaan Alat Tulis Kantor,” J. SAINTIKOM J. Sains Manaj. Inform. Dan Komput., vol. 22, no. 2, p. 280, Aug. 2023, doi: 10.53513/jis.v22i2.8718.
E. Junaedi, A. M. Siregar, and E. Nurlaelasari, “Implementasi C4.5 Dan Algoritma K Nearest Neighbor Untuk Prediksi Kelayakan Pemberian Kredit Menggunakan RapidMiner Studio,” no. 1, 2022.
A. G. Putrada, N. Alamsyah, S. F. Pane, and M. Nurkamal Fauzan, “Feature Importance on Text Analysis for a Novel Indonesian Movie Recommender System,” in 2023 11th International Conference on Information and Communication Technology (ICoICT), 2023, pp. 34–39. doi: 10.1109/ICoICT58202.2023.10262504.
N. Alamsyah, Saparudin, and A. P. Kurniati, “A Novel Airfare Dataset To Predict Travel Agent Profits Based On Dynamic Pricing,” in 2023 11th International Conference on Information and Communication Technology (ICoICT), 2023, pp. 575–581. doi: 10.1109/ICoICT58202.2023.10262694.
I. K. Sutarga, “Analisis Pola Spasial Sebaran COVID-19 Kota Bogor Berdasarkan Indek Moran,” Media Komun. Geogr., vol. 23, no. 2, pp. 265–276, Dec. 2022, doi: 10.23887/mkg.v23i2.55183.