Implementasi Teknik Data Mining untuk mendeteksi Gangguan Psikologis Pasca Melahirkan

  • Muhammad Zulfadhilah Univeristas Sari Mulia
  • Putri Yuliantie Universitas Sari Mulia
Keywords: data mining, naïve bayes, pasca melahirkan, psikologis

Abstract

Currently, in the health sector, various studies are conducted, one of which is in terms of psychological health. One of the psychological disorders occurs in postpartum mothers, around 10-15% of postpartum mothers experience psychological disorders such as anxiety and depression, the high number is a concern in society, especially families. This research was conducted to assist the government in supporting research priorities on health independence using current technology. This is also a research urgency, namely to minimize psychological disorders that occur in postpartum mothers. One of the problem-solving approaches proposed in this research is to use technology with the implementation of Data Mining which has the advantage of predicting the likelihood of a person having certain diseases or health disorders. Data Mining is an approach that is often used and has been used as a reference in health nursing by using the results in two branches, namely for decision support and policy making. Implementation of the Data Mining algorithm provides exposure to analyze, detect, and predict the presence of disease and assist doctors in making decisions with early detection and appropriate management. One type of data mining is using Naive Bayes. From the results of the model evaluation, it can be concluded that the Naive Bayes model shows good performance in detecting postpartum psychological disorders. Evaluation values describe the model's ability to distinguish between positive and negative classes, with an AUC value of around 0.878. The model's accuracy of about 0.819 indicates its ability to correctly predict about 81.9% of the cases tested. F1-Score and Recall around 0.817 and 0.819 respectively indicate a balance between positive prediction and positive instance-finding ability. The Confusion Matrix also describes the performance of the model. Despite having a significant number of True Positives (TP) (870), the number of False Positives (FP) is noteworthy (162), indicating some false positive predictions.

 

Downloads

Download data is not yet available.

References

M. Zulfadhilah and N. W. Ningrum, “Rancang Bangun Sistem Pakar Untuk Deteksi Dini Tingkat Depresi Pasca Melahirkan,” Edik Informatika, vol. 8, no. 2, pp. 81–92, Apr. 2022, doi: 10.22202/ei.2022.v8i2.5665.

M. Zulfadhilah, “Sistem Pakar Untuk Diagnosa Gangguan Psikologis Anak Dengan Algoritma Breadth First Search (BFS),” JITEKH, vol. 7, no. 1, pp. 15–22, 2019.

WHO, “Maternal Mental Health,” World Health Organization. Accessed: Mar. 25, 2023. [Online]. Available: https://www.who.int/teams/mental-health-and-substance-use/promotion-prevention/maternal-mental-health

Rokom, “Transformasi Digital Bidang Kesehatan : Strategi Jangka Panjang Atasi Pandemi COVID-19,” Kemenkes RI.

F. Farajullah and M. Murinto, “Sistem Pakar Deteksi Dini Gangguan Kecemasan (Anxiety) Menggunakan Metode Forward Chaining Berbasis Web,” JSTIE (Jurnal Sarjana Teknik Informatika) (E-Journal), vol. 7, no. 1, p. 1, 2019, doi: 10.12928/jstie.v7i1.15800.

E. Karyadiputra and A. Setiawan, “PENERAPAN DATA MINING UNTUK PREDIKSI AWAL KEMUNGKINAN TERINDIKASI DIABETES,” Teknosains: Media Informasi Sains dan Teknologi, vol. 16, no. 2, pp. 221–232, 2022, doi: https://doi.org/10.24252/teknosains.v16i2.28257.

ACOG, “Postpartum Depression,” American College of Obstetricians and Gynecologists. Accessed: Mar. 25, 2023. [Online]. Available: https://www.acog.org/womens-health/faqs/postpartum-depression

R. A. Sari, “Literature Review: Depresi Postpartum,” Jurnal Kesehatan, vol. 11, no. 1, pp. 167–174, 2020, doi: 10.26630/jk.v11i1.1586.

B. G. Mamatha Bai, B. M. Nalini, and J. Majumdar, “Analysis and Detection of Diabetes Using Data Mining Techniques—A Big Data Application in Health Care,” 2019, pp. 443–455. doi: 10.1007/978-981-13-5953-8_37.

K. Saqib, A. F. Khan, and Z. A. Butt, “Machine Learning Methods for Predicting Postpartum Depression: Scoping Review,” JMIR Ment Health, vol. 8, no. 11, p. e29838, Nov. 2021, doi: 10.2196/29838.

I. Fatima, B. U. D. Abbasi, S. Khan, M. Al‐Saeed, H. F. Ahmad, and R. Mumtaz, “Prediction of postpartum depression using machine learning techniques from social media text,” Expert Syst, vol. 36, no. 4, Aug. 2019, doi: 10.1111/exsy.12409.

I. W. Gamadarenda and I. Waspada, “Implementasi Data Mining untuk Deteksi Penyakit Ginjal Kronis (PGK) menggunakan K-Nearest Neighbor (KNN) dengan Backward Elimination,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 2, p. 417, Feb. 2020, doi: 10.25126/jtiik.2020721896.

I. Solikin, “Teknik Data Mining untuk Prediksi Kanker Payudara yang Efisien,” Jurnal Teknik Elektro, vol. 3, no. 3, pp. 63–67, Sep. 2021.

L. Sari, A. Romadloni, and R. Listyaningrum, “Penerapan Data Mining dalam Analisis Prediksi Kanker Paru Menggunakan Algoritma Random Forest,” Infotekmesin, vol. 14, no. 01, pp. 155–162, Jan. 2023, doi: 10.35970/infotekmesin.v14i1.1751.

A. Rahmadhani, F. Fauziah, and A. Aningsih, “Sistem Pakar Deteksi Dini Kesehatan Mental Menggunakan Metode Dempster-Shafer,” Sisfotenika, vol. 10, no. 1, p. 37, 2020, doi: 10.30700/jst.v10i1.747.

H. M. van Loo, T. B. Bigdeli, Y. Milaneschi, S. H. Aggen, and K. S. Kendler, “Data mining algorithm predicts a range of adverse outcomes in major depression,” J Affect Disord, vol. 276, pp. 945–953, Nov. 2020, doi: 10.1016/j.jad.2020.07.098.

Hozairi, Anwari, and S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,” Jurnal Ilmiah NERO, vol. 6, no. 2, pp. 133–144, 2021, doi: http://dx.doi.org/10.21107/nero.v6i2.237.

S. Janu, S. Tyas, M. Febianah, F. Solikhah, A. L. Kamil, and W. A. Arifin, “Analisis Perbandingan Algoritma Naive Bayes Dan C.45 Dalam Klasifikasi Data Mining Untuk Memprediksi Kelulusan,” TEMATIK Jurnal Teknologi Informasi dan Komunikasi, vol. 8, no. 1, pp. 96–103, Jun. 2021, doi: 10.38204/tematik.v8i1.576.

E. Indrayuni, “Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes,” Jurnal Khatulistiwa Informatika, vol. 7, no. 1, pp. 29–36, 2019, doi: https://doi.org/10.31294/jki.v7i1.5740.

N. Hidayati, V. G. Utomo, and N. Wakhidah, “Penerapan Metode Naïve Bayes Dalam Pemeriksaan Kesehatan,” Jurnal Informatika UPGRIS, vol. 5, no. 2, pp. 174–178, 2019.

Published
2023-11-14
How to Cite
Muhammad Zulfadhilah, & Putri Yuliantie. (2023). Implementasi Teknik Data Mining untuk mendeteksi Gangguan Psikologis Pasca Melahirkan. TEMATIK, 10(2), 199 - 203. Retrieved from https://jurnal.plb.ac.id/index.php/tematik/article/view/1481