Sistem Klasterisasi Volume Sampah Organik di Kota Magelang menggunakan K-Means

  • Muhamad Nurrohman Universitas Muhammadiyah Magelang
  • Maimunah Maimunah Universitas Muhammadiyah Magelang
  • Pristi Sukmasetya Universitas Muhammadiyah Magelang
Keywords: Organic Waste, K-Means, Clustering, Data Mining

Abstract

Waste is one of the most serious problems faced by many regions. In Magelang City alone, 70 tons of waste is generated per day, and 60% of it is organic waste. Business sectors such as restaurants, culinary tours, markets, and hotels are high producers of organic waste. Organic waste can be utilized and sorted to be useful for maggot farmers, compost and biogas makers, but the lack of information about the source and availability of this waste is an obstacle for organic waste users and the Environmental Service. The purpose of this research is to assist the Environmental Agency in planning waste transportation, as well as making it easier for organic waste users to get information about the waste. In this study, the data used is waste volume data and data on the number of visitors and traders in hotels, markets, and street vendors in Magelang City, the data is then processed using the K-Means clustering algorithm. The data that has been processed produces the optimal number of clusters is 2, cluster 1 is a low waste volume producing category, while cluster 2 is a high waste volume producing category. After obtaining the clustering results using the K-Means algorithm, an evaluation of the results was carried out using the silhouette score method which resulted in a score value of 0.66, from the evaluation results it can be concluded that the application of the K-Means algorithm in clustering the volume of organic waste in Magelang City is quite good. With these results, it is hoped that it can help the Magelang City government, especially the Magelang City Environmental Agency, maggot cultivators, and other organic waste users to more easily obtain information about the availability of organic waste, which is expected to help reduce the volume of organic waste.

Downloads

Download data is not yet available.

References

N. F. Muto’in and A. Utami, “Analisis Tingkat Kecelakaan Lalu Lintas Menggunakan Metode Accident Rate Dan Equivalent Accident Number (EAN) Di Kota Magelang,” J. Rekayasa Sipil JRS-Unand, vol. 18, no. 1, p. 60, May 2022, doi: 10.25077/jrs.18.1.60-67.2022.

R. I. Borman and Y. Purwanto, “Impelementasi Multimedia Development Live Cycle pada Pengembangan Game Edukasi Pengenalan Bahaya Sampah pada Anak,” vol. 5, no. 2, 2019, doi: http://dx.doi.org/10.26418/jp.v5i2.25997.

R. Mulyani, D. I. Anwar, and N. Nurbaeti, “Pemanfaatan Sampah Organik untuk Pupuk Kompos dan Budidaya Maggot Sebagai Pakan Ternak,” JPM J. Pemberdaya. Masy., vol. 6, no. 1, pp. 568–573, May 2021, doi: 10.21067/jpm.v6i1.4911.

N. Salman, E. Nofiyanti, and T. Nurfadhilah, “Pengaruh dan Efektivitas Maggot Sebagai Proses Alternatif Penguraian Sampah Organik Kota di Indonesia,” J. Serambi Eng., vol. 5, no. 1, Dec. 2019, doi: 10.32672/jse.v5i1.1655.

D. Ruwandara, M. Jajuli, and A. Rizal, “Analisis Algoritma K-Means Clustering Untuk Daerah Penyebaran Sampah di Kota Bekasi,” JOINS J. Inf. Syst., vol. 6, no. 1, pp. 56–63, May 2021, doi: 10.33633/joins.v6i1.4085.

W. Santoso and P. Sukmasetya, “Prediksi Volume Sampah di TPSA Banyuurip Menggunakan Metode Backpropagation Neural Network,” vol. 7, 2023, doi: http://dx.doi.org/10.30865/mib.v7i1.5499.

M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means Algorithm: A Comprehensive Survey and Performance Evaluation,” Electronics, vol. 9, no. 8, p. 1295, Aug. 2020, doi: 10.3390/electronics9081295.

M. Z. Rodriguez et al., “Clustering algorithms: A comparative approach,” PLOS ONE, vol. 14, no. 1, p. e0210236, Jan. 2019, doi: 10.1371/journal.pone.0210236.

A. Solichin and K. Khairunnisa, “Klasterisasi Persebaran Virus Corona (Covid-19) Di DKI Jakarta Menggunakan Metode K-Means,” Fountain Inform. J., vol. 5, no. 2, p. 52, Oct. 2020, doi: 10.21111/fij.v5i2.4905.

B. N. S. Desi Kristina Sitinjak, “Clustering Daerah Penyumbang Sampah Berdasarkan Provinsi di Indonesia Menggunakan Algoritma K-Means,” Sep. 2022, doi: 10.5281/ZENODO.7059032.

Y. Christian and K. O. Y. R. Qi, “Penerapan K-Means pada Segmentasi Pasar untuk Riset Pemasaran pada Startup Early Stage dengan Menggunakan CRISP-DM,” JURIKOM J. Ris. Komput., vol. 9, no. 4, p. 966, Aug. 2022, doi: 10.30865/jurikom.v9i4.4486.

Z. Nabila, A. R. Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 di Povinsi Lampung Dengan Algoritma K-Means,” J. Teknol. Dan Sist. Inf., vol. 2, no. 2, doi: https://doi.org/10.33365/jtsi.v2i2.868.

P. A. Ariawan, “Optimasi Pengelompokan Data Pada Metode K-means dengan Analisis Outlier,” J. Nas. Teknol. Dan Sist. Inf., vol. 5, no. 2, pp. 88–95, Sep. 2019, doi: 10.25077/TEKNOSI.v5i2.2019.88-95.

R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient,” vol. 5, no. 2, doi: https://doi.org/10.30871/jaic.v5i1.3237.

A. Handayanto, K. Latifa, N. D. Saputro, and R. R. Waliansyah, “Analisis dan Penerapan Algoritma Support Vector Machine (SVM) dalam Data Mining untuk Menunjang Strategi Promosi,” JUITA J. Inform., vol. 7, no. 2, p. 71, Nov. 2019, doi: 10.30595/juita.v7i2.4378.

L. Karlina and O. Nurdiawan, “Penerapan K- Medoids Dalam Klasifikasi Persebaran Lahan Kritis di Jawa Barat Berdasarkan Kabupaten/Kota,” vol. 7, no. 1, 2023, doi: https://doi.org/10.36040/jati.v7i1.6348.

P. Mishra, A. Biancolillo, J. M. Roger, F. Marini, and D. N. Rutledge, “New data preprocessing trends based on ensemble of multiple preprocessing techniques,” TrAC Trends Anal. Chem., vol. 132, p. 116045, Nov. 2020, doi: 10.1016/j.trac.2020.116045.

N. T. S. Saptadi and V. P. Taga, “Penerapan Algoritma K-Means Dalam Mengatasi Permasalahan Sampah (Studi Kasus: Pola Perilaku Masyarakat Dalam Membuang Sampah),” vol. 10, no. 1, 2022, doi: https://doi.org/10.56963/tematika.v10i1.134.

M. Nishom, “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square,” J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 20–24, Jan. 2019, doi: 10.30591/jpit.v4i1.1253.

H. Priyatman, F. Sajid, and D. Haldivany, “Klasterisasi Menggunakan Algoritma K-Means Clustering untuk Memprediksi Waktu Kelulusan Mahasiswa,” J. Edukasi Dan Penelit. Inform. JEPIN, vol. 5, no. 1, p. 62, Apr. 2019, doi: 10.26418/jp.v5i1.29611.

V. A. Ekasetya and A. Jananto, “Klusterisasi Optimal Dengan Elbow Method Untuk Pengelompokan Data Kecelakaan Lalu Lintas di Kota Semarang,” J. Din. Inform., vol. 12, no. 1, pp. 20–28, Aug. 2020, doi: 10.35315/informatika.v12i1.8159.

M. Shutaywi and N. N. Kachouie, “Silhouette Analysis for Performance Evaluation in Machine Learning with Applications to Clustering,” Entropy, vol. 23, no. 6, p. 759, Jun. 2021, doi: 10.3390/e23060759.

Published
2023-06-08
How to Cite
Nurrohman, M., Maimunah, M., & Sukmasetya, P. (2023). Sistem Klasterisasi Volume Sampah Organik di Kota Magelang menggunakan K-Means. TEMATIK, 10(1), 146-153. https://doi.org/10.38204/tematik.v10i1.1338