Segmentasi Citra Keretakan Dinding Beton Menggunakan Teknik Perbandingan Evaluasi Metrik
Abstract
Masalah yang umum ditemui pada bangunan adalah keretakan dinding beton. Berbagai faktor yang mempengaruhi keretakan dinding baik secara halus atau keretakan yang parah. Kerusakan pada dinding beton dapat di deteksi dini dengan berbagai teknik. Segmentasi citra dapat digunakan untuk mempercepat dan mempermudah deteksi keretakan pada dinding beton. Dalam analisis deteksi keretakan pada dinding beton, segmentasi citra digunakan untuk memisahkan area yang berbeda pada citra, seperti area keretakan dan area non-keretakan. Setelah itu, analisis lebih lanjut dilakukan pada area keretakan untuk menentukan karakteristik keretakan seperti panjang, lebar, kedalaman, dan orientasi. Segmentasi citra keretakan dinding beton dapat di evaluasi melalui evaluasi metrik dengan berbagai metode. Penerapan segmentasi citra untuk deteksi keretakan pada dinding beton dapat mempercepat proses inspeksi dan memperoleh hasil yang lebih akurat. Teknik segmentasi citra yang digunakan dalam proses ini adalah menggunakan teknik perbandingan evaluasi metrik untuk dapat melakukan proses segmentasi citra keretakan dinding beton. Hasil uji segmentasi citra akan membandingkan tiga metode segmentasi citra. Segmentasi citra merupakan segmentasi yang berbeda dengan karakteristik tertentu, yaitu menggunakan pendekatan DAS, canny filter, dan metode kontur aktif geodesik morfologi dalam evaluasi metrik. Untuk mengetahui tingkat keberhasilan dalam proses segmentasi citra menggunakan precision-recall, yang berfungsi untuk mengevaluasi kualitas output dari citra.
Downloads
References
Z. Yu, Y. Shen, Z. Sun, J. Chen, and W. Gang, “Cracklab: A high-precision and efficient concrete crack segmentation and quantification network,” Dev. Built Environ., vol. 12, no. September, p. 100088, 2022, doi: 10.1016/j.dibe.2022.100088.
D. Zebua, L. Setia, and B. Wibowo, “Pengaruh Jenis Tanah Terhadap Simpangan Lateral Gedung Beton Bertulang,” Ge-STRAMJurnal Perenc. dan Rekayasa Sipil, vol. 06, pp. 7–11, 2023.
A. Geometri Dan, “Analisis Redesain Pondasi Abutment Dan Dinding Penahan Tanah Jembatan Sungai Desa Kendalbulur Kecamatan Boyolangu Kabupaten Tulungagung Restu,” J. Tek. Sipil, vol. 7, no. 2, pp. 26–37, 2018.
A. Nahla, “Perencanaan Abutment Jembatan Glendeng Kabupaten Tuban,” De’Teksi J. Tek. Sipil Unigoro, vol. 7, no. 1, pp. 71–89, 2022.
I. R. Mulyawan and U. G. Mada, “Evaluasi dan Optimasi Dinding Penahan Tanah Desa Sulangai , Kecamatan Petang , Kabupaten Badung , dengan Perkuatan Ground Anchor,” in Simposium Nasional Teknologi Infrastruktur Abad ke-21, 2023, no. January 2021, pp. 0–7.
D. Dais, İ. E. Bal, E. Smyrou, and V. Sarhosis, “Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning,” Autom. Constr., vol. 125, no. July 2020, 2021, doi: 10.1016/j.autcon.2021.103606.
H. Li, W. Wang, M. Wang, L. Li, and V. Vimlund, “A review of deep learning methods for pixel-level crack detection,” J. Traffic Transp. Eng. (English Ed., vol. 9, no. 6, pp. 945–968, 2022, doi: 10.1016/j.jtte.2022.11.003.
Q. Qin, Q. Meng, H. Yang, and W. Wu, “Study of the anti-abrasion performance and mechanism of coral reef sand concrete,” Constr. Build. Mater., vol. 291, p. 123263, 2021, doi: 10.1016/j.conbuildmat.2021.123263.
S. Guillaume, V. Mohammadi, A. Tidjani, S. Mahama, and P. Gouton, “A deep semantic segmentation-based algorithm to segment crops and weeds in agronomic color images,” Inf. Process. Agric., no. xxxx, 2021, doi: 10.1016/j.inpa.2021.08.003.
A. Ibrahim and E.-S. M. El-Kenawy, “Image Segmentation Methods Based on Superpixel Techniques: A Survey,” J. Comput. Sci. Inf. Syst., vol. 2020, no. 6, pp. 1–10, 2020, [Online]. Available: www.jcsis.org/.
D. Zhao et al., “Ant Colony Optimization with Horizontal and Vertical Crossover Search: Fundamental Visions for Multi-threshold Image Segmentation,” Expert Syst. Appl., p. 114122, 2020, doi: 10.1016/j.eswa.2020.114122.
S. Zhao et al., “Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi ’ s entropy for chronic obstructive pulmonary disease,” Comput. Biol. Med., vol. 134, no. May, p. 104427, 2021, doi: 10.1016/j.compbiomed.2021.104427.
J. Ma, X. Wang, and B. Xiao, “An image segmentation method based on Simple Linear Iterative Clustering and graph-based semi-supervised learning,” Proc. 2015 Int. Conf. Orange Technol. ICOT 2015, no. 2014, pp. 10–13, 2016, doi: 10.1109/ICOT.2015.7498477.
D. Riana, S. Rahayu, and M. Hasan, “Heliyon Comparison of segmentation and identification of swietenia mahagoni wood defects with augmentation images,” Heliyon, vol. 7, no. January, p. e07417, 2021, doi: 10.1016/j.heliyon.2021.e07417.
F. D. Marleny, “Comparison of Evaluation Image Segmentation Metrics on Sasirangan Fabric Pattern Journal of Computer Networks , Architecture and High Performance Computing,” J. Comput. Networks , Archit. High Perform. Comput., vol. 4, no. 2, pp. 96–103, 2022.
L. Wang, J. Wang, Z. Liu, J. Zhu, and F. Qin, “Evaluation of a deep-learning model for multispectral remote sensing of land use and crop classification,” Crop J., no. xxxx, 2022, doi: 10.1016/j.cj.2022.01.009.
S. Pan and M. Kudo, “Segmentation of pores in wood microscopic images based on mathematical morphology with a variable structuring element,” Comput. Electron. Agric., vol. 75, no. 2, pp. 250–260, 2011, doi: 10.1016/j.compag.2010.11.010.
A. Azeroual and K. Afdel, “Fast Image Edge Detection based on Faber Schauder Wavelet and Otsu Threshold,” Heliyon, no. July, pp. 1–19, 2017, doi: 10.1016/j.heliyon.2017.e00485.
F. I. Rahma, E. Utami, and H. Al Fatta, “The Using of Gaussian Pyramid Decomposition, Compact Watershed Segmentation Masking and DBSCAN in Copy-Move Forgery Detection with SIFT,” 2020 3rd Int. Conf. Inf. Commun. Technol. ICOIACT 2020, pp. 325–330, 2020, doi: 10.1109/ICOIACT50329.2020.9332081.
M. Huang, Y. Liu, and Y. Yang, “Edge detection of ore and rock on the surface of explosion pile based on improved Canny operator,” Alexandria Eng. J., vol. 61, no. 12, pp. 10769–10777, 2022, doi: 10.1016/j.aej.2022.04.019.
A. G. Medeiros et al., “A new fast morphological geodesic active contour method for lung CT image segmentation,” Meas. J. Int. Meas. Confed., vol. 148, 2019, doi: 10.1016/j.measurement.2019.05.078.
R. Pérez-zavala, M. Torres-torriti, F. A. Cheein, and G. Troni, “Original papers A pattern recognition strategy for visual grape bunch detection in vineyards,” Comput. Electron. Agric., vol. 151, no. September 2017, pp. 136–149, 2018, doi: 10.1016/j.compag.2018.05.019.