Analisis Sikap mengenai Artificial Intelligence (AI) dan Niat Berkelanjutan untuk menggunakan Artificial Intelligence (AI)
Abstract
Potensi revolusi yang disebabkan oleh Kecerdasan Buatan (AI) telah merambah ke seluruh aspek kehidupan kita. Di era digital ini, AI diperkirakan akan mengambil alih pekerjaan, khususnya agen percakapan berbasis teks. Penelitian ini bertujuan untuk memahami sikap seseorang terhadap niatnya menggunakan AI dalam tugas rutin dan niat berkelanjutannya untuk menggunakan AI. Sampel penelitian selanjutnya dianalisis menggunakan analisis kuantitatif dan kualitatif. Hasil analisis kuantitatif menunjukkan bahwa pengaruh GAAIS terhadap variabel CI sebesar 17,5%. Dalam studi ini, kecepatan diidentifikasi sebagai keunggulan sistem AI dibandingkan manusia, sementara manusia unggul dalam empati, simpati, dan kreativitas, khususnya dalam masalah yang kompleks dan sangat tidak pasti. Sistem AI juga memungkinkan kendali manusia atas perubahan perilaku dan perspektif.
Downloads
References
Arly, A., Dwi, N., Andini, R., (2023), Implementasi Penggunaan Artificial Intelligence Dalam Proses Pembelajaran Mahasiswa Ilmu Komunikasi di Kelas A, Seminar Nasional Universitas Negeri Surabaya 2023, pp. 362-374
Astrid Schepman & Paul Rodway, (2023), The General Attitudes towards Artificial Intelligence Scale (GAAIS): Confirmatory Validation and Associations with Personality, Corporate Distrust, and General Trust, International Journal of Human–Computer Interaction, 39:13, 2724-2741, DOI: 10.1080/10447318.2022.2085400
Bhattacherjee, A., (2001), Understanding information systems continuance: an expectation confirmation model. MIS Q 25(3):351–370
Bullock, J. B., (2019), Artificial Intelligence, Discretion, and Bureaucracy. American Review of Public Administration, 49(7), 751–761. https://doi.org/10.1177/0275074019856123
Gerlich, M., (2023), Perceptions and Acceptance of Artificial Intelligence: A Multi-Dimensional Study, Social Sciences 12: 502. https://doi.org/ 10.3390/socsci12090502
Ghozali, Imam, (2005), “Aplikasi Analisis Multivariate dengan Program SPSS”, Semarang : Badan Penerbit Universitas Diponegoro
Jo, H., & Baek, E. M. (2023). Customization, loneliness, and optimism: drivers of intelligent personal assistant continuance intention during COVID-19. Humanities and Social Sciences Communications, 10(1).
https://doi.org/10.1057/s41599-023-02021-1
Kronemann, B., Kizgin, H., Rana, N., & K. Dwivedi, Y. (2023). How AI encourages consumers to share their secrets? The role of anthropomorphism, personalisation, and privacy concerns and avenues for future research. Spanish Journal of Marketing - ESIC, 27(1), 2–19. https://doi.org/10.1108/SJME-10-2022-0213
Lee, J. C., Tang, Y., & Jiang, S. Q. (2023). Understanding continuance intention of artificial intelligence (AI)-enabled mobile banking applications: an extension of AI characteristics to an expectation confirmation model. Humanities and Social Sciences Communications, 10(1), 1–12. https://doi.org/10.1057/s41599-023-01845-1
Li, B., Chen, Y., Liu, L., & Zheng, B. (2023). Users’ intention to adopt artificial intelligence-based chatbot: a meta-analysis. Service Industries Journal, 43(15–16), 1117–1139. https://doi.org/10.1080/02642069.2023.2217756
Liu, X., He, X., Wang, M., & Shen, H. (2022). What influences patients’ continuance intention to use AI-powered service robots at hospitals? The role of individual characteristics. Technology in Society, 70(May), 101996. https://doi.org/10.1016/j.techsoc.2022.101996
Reinke, K., & Gerlach, G. I. (2022). Linking Availability Expectations, Bidirectional Boundary Management Behavior and Preferences, and Employee Well-Being: an Integrative Study Approach. Journal of Business and Psychology, 37(4), 695–715. https://doi.org/10.1007/s10869-021-09768-x
Rumawas W. (2022). Employees’ Turnover Intention in the Construction Industry in Indonesia. Journal of Construction in Developing Countries, 27(2): 127-146. DOI: 10.21315/jcdc-03-21-0050
Setyadi, E. V., Suarly, R., Handoko, R., Ali, A., (2020), Faktor - Faktor yang Mempengaruhi Continuance Intention dari Pengguna pada Layanan M-Payment (Studi Kasus Go-Pay), Kajian Branding Indonesia, Vol. 2, no. 2.
Situmorang, (2008), “Analisis Data Penelitian”, Medan: USU Press.
Sudiana, I. W., Wiagustini, N. L. P., Sedana, I. B. P., & Artini, L. G. S. (2022). Reflection on Values of Financial Governance of Village Credit Institutions in Bali. Quality - Access to Success, 23(186), 269–274.
https://doi.org/10.47750/QAS/23.186.35
Sukmawati, Nasir, (2023), Analysis of Research Data Quantitative and Qualitative, Jurnal Edumaspul, Vol. 7, no. 1, ISSN 2548-8201.
Vasiljeva, T., Kreituss, I., & Lulle, I. (2021). Artificial Intelligence: The Attitude of the Public and Representatives of Various Industries. Journal of Risk and Financial Management, 14(8). https://doi.org/10.3390/jrfm14080339
Waliszewski, K., & Warchlewska, A. (2020). Attitudes towards artificial intelligence in the area of personal financial planning: A case study of selected countries. Entrepreneurship and Sustainability Issues, 8(2), 399–420. https://doi.org/10.9770/jesi.2020.8.2(24)
Yuriev, A., Dahmen, M., Paillé, P., Boiral, O., & Guillaumie, L. (2020). Pro-environmental behaviors through the lens of the theory of planned behavior: A scoping review. Resources, Conservation and Recycling, 155, 104660. https://doi.org/10.1016/j.resconrec.2019.104660